Hamiltonian colorings of graphs with long cycles
Mathematica Bohemica, Tome 128 (2003) no. 3, pp. 263-275.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By a hamiltonian coloring of a connected graph $G$ of order $n \ge 1$ we mean a mapping $c$ of $V(G)$ into the set of all positive integers such that $\vert c(x) - c(y)\vert \ge n - 1 - D_G(x, y)$ (where $D_G(x, y)$ denotes the length of a longest $x-y$ path in $G$) for all distinct $x, y \in G$. In this paper we study hamiltonian colorings of non-hamiltonian connected graphs with long cycles, mainly of connected graphs of order $n \ge 5$ with circumference $n - 2$.
DOI : 10.21136/MB.2003.134180
Classification : 05C15, 05C38, 05C45, 05C78
Keywords: connected graphs; hamiltonian colorings; circumference
@article{10_21136_MB_2003_134180,
     author = {Nebesk\'y, Ladislav},
     title = {Hamiltonian colorings of graphs with long cycles},
     journal = {Mathematica Bohemica},
     pages = {263--275},
     publisher = {mathdoc},
     volume = {128},
     number = {3},
     year = {2003},
     doi = {10.21136/MB.2003.134180},
     mrnumber = {2012604},
     zbl = {1050.05055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134180/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - Hamiltonian colorings of graphs with long cycles
JO  - Mathematica Bohemica
PY  - 2003
SP  - 263
EP  - 275
VL  - 128
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134180/
DO  - 10.21136/MB.2003.134180
LA  - en
ID  - 10_21136_MB_2003_134180
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T Hamiltonian colorings of graphs with long cycles
%J Mathematica Bohemica
%D 2003
%P 263-275
%V 128
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134180/
%R 10.21136/MB.2003.134180
%G en
%F 10_21136_MB_2003_134180
Nebeský, Ladislav. Hamiltonian colorings of graphs with long cycles. Mathematica Bohemica, Tome 128 (2003) no. 3, pp. 263-275. doi : 10.21136/MB.2003.134180. http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134180/

Cité par Sources :