Pseudo $BL$-algebras and $DR\ell $-monoids
Mathematica Bohemica, Tome 128 (2003) no. 2, pp. 199-208.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown that pseudo $BL$-algebras are categorically equivalent to certain bounded $DR\ell $-monoids. Using this result, we obtain some properties of pseudo $BL$-algebras, in particular, we can characterize congruence kernels by means of normal filters. Further, we deal with representable pseudo $BL$-algebras and, in conclusion, we prove that they form a variety.
DOI : 10.21136/MB.2003.134040
Classification : 03B52, 03G25, 06D35, 06F05
Keywords: pseudo $BL$-algebra; $DR\ell $-monoid; filter; polar; representable pseudo $BL$-algebra
@article{10_21136_MB_2003_134040,
     author = {K\"uhr, Jan},
     title = {Pseudo $BL$-algebras and $DR\ell $-monoids},
     journal = {Mathematica Bohemica},
     pages = {199--208},
     publisher = {mathdoc},
     volume = {128},
     number = {2},
     year = {2003},
     doi = {10.21136/MB.2003.134040},
     mrnumber = {1995573},
     zbl = {1024.06005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134040/}
}
TY  - JOUR
AU  - Kühr, Jan
TI  - Pseudo $BL$-algebras and $DR\ell $-monoids
JO  - Mathematica Bohemica
PY  - 2003
SP  - 199
EP  - 208
VL  - 128
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134040/
DO  - 10.21136/MB.2003.134040
LA  - en
ID  - 10_21136_MB_2003_134040
ER  - 
%0 Journal Article
%A Kühr, Jan
%T Pseudo $BL$-algebras and $DR\ell $-monoids
%J Mathematica Bohemica
%D 2003
%P 199-208
%V 128
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134040/
%R 10.21136/MB.2003.134040
%G en
%F 10_21136_MB_2003_134040
Kühr, Jan. Pseudo $BL$-algebras and $DR\ell $-monoids. Mathematica Bohemica, Tome 128 (2003) no. 2, pp. 199-208. doi : 10.21136/MB.2003.134040. http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134040/

Cité par Sources :