Regular, inverse, and completely regular centralizers of permutations
Mathematica Bohemica, Tome 128 (2003) no. 2, pp. 179-186.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For an arbitrary permutation $\sigma $ in the semigroup $T_n$ of full transformations on a set with $n$ elements, the regular elements of the centralizer $C(\sigma )$ of $\sigma $ in $T_n$ are characterized and criteria are given for $C(\sigma )$ to be a regular semigroup, an inverse semigroup, and a completely regular semigroup.
DOI : 10.21136/MB.2003.134038
Classification : 20M17, 20M18, 20M20
Keywords: semigroup of full transformations; permutation; centralizer; regular; inverse; completely regular semigroups
@article{10_21136_MB_2003_134038,
     author = {Konieczny, Janusz},
     title = {Regular, inverse, and completely regular centralizers of permutations},
     journal = {Mathematica Bohemica},
     pages = {179--186},
     publisher = {mathdoc},
     volume = {128},
     number = {2},
     year = {2003},
     doi = {10.21136/MB.2003.134038},
     mrnumber = {1995571},
     zbl = {1027.20046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134038/}
}
TY  - JOUR
AU  - Konieczny, Janusz
TI  - Regular, inverse, and completely regular centralizers of permutations
JO  - Mathematica Bohemica
PY  - 2003
SP  - 179
EP  - 186
VL  - 128
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134038/
DO  - 10.21136/MB.2003.134038
LA  - en
ID  - 10_21136_MB_2003_134038
ER  - 
%0 Journal Article
%A Konieczny, Janusz
%T Regular, inverse, and completely regular centralizers of permutations
%J Mathematica Bohemica
%D 2003
%P 179-186
%V 128
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134038/
%R 10.21136/MB.2003.134038
%G en
%F 10_21136_MB_2003_134038
Konieczny, Janusz. Regular, inverse, and completely regular centralizers of permutations. Mathematica Bohemica, Tome 128 (2003) no. 2, pp. 179-186. doi : 10.21136/MB.2003.134038. http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134038/

Cité par Sources :