On the $\sigma $-finiteness of a variational measure
Mathematica Bohemica, Tome 128 (2003) no. 2, pp. 137-146.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The $\sigma $-finiteness of a variational measure, generated by a real valued function, is proved whenever it is $\sigma $-finite on all Borel sets that are negligible with respect to a $\sigma $-finite variational measure generated by a continuous function.
DOI : 10.21136/MB.2003.134037
Classification : 26A24, 26A39, 26A45, 28A15
Keywords: variational measure; $H$-differentiable; $H$-density
@article{10_21136_MB_2003_134037,
     author = {Caponetti, Diana},
     title = {On the $\sigma $-finiteness of a variational measure},
     journal = {Mathematica Bohemica},
     pages = {137--146},
     publisher = {mathdoc},
     volume = {128},
     number = {2},
     year = {2003},
     doi = {10.21136/MB.2003.134037},
     mrnumber = {1995568},
     zbl = {1027.26007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134037/}
}
TY  - JOUR
AU  - Caponetti, Diana
TI  - On the $\sigma $-finiteness of a variational measure
JO  - Mathematica Bohemica
PY  - 2003
SP  - 137
EP  - 146
VL  - 128
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134037/
DO  - 10.21136/MB.2003.134037
LA  - en
ID  - 10_21136_MB_2003_134037
ER  - 
%0 Journal Article
%A Caponetti, Diana
%T On the $\sigma $-finiteness of a variational measure
%J Mathematica Bohemica
%D 2003
%P 137-146
%V 128
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134037/
%R 10.21136/MB.2003.134037
%G en
%F 10_21136_MB_2003_134037
Caponetti, Diana. On the $\sigma $-finiteness of a variational measure. Mathematica Bohemica, Tome 128 (2003) no. 2, pp. 137-146. doi : 10.21136/MB.2003.134037. http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134037/

Cité par Sources :