Precovers and Goldie’s torsion theory
Mathematica Bohemica, Tome 128 (2003) no. 4, pp. 395-400.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Recently, Rim and Teply , using the notion of $\tau $-exact modules, found a necessary condition for the existence of $\tau $-torsionfree covers with respect to a given hereditary torsion theory $\tau $ for the category $R$-mod of all unitary left $R$-modules over an associative ring $R$ with identity. Some relations between $\tau $-torsionfree and $\tau $-exact covers have been investigated in . The purpose of this note is to show that if $\sigma = (\mathcal T_{\sigma },\mathcal F_{\sigma })$ is Goldie’s torsion theory and $\mathcal F_{\sigma }$ is a precover class, then $\mathcal F_{\tau }$ is a precover class whenever $\tau \ge \sigma $. Further, it is shown that $\mathcal F_{\sigma }$ is a cover class if and only if $\sigma $ is of finite type and, in the case of non-singular rings, this is equivalent to the fact that $\mathcal F_{\tau }$ is a cover class for all hereditary torsion theories $\tau \ge \sigma $.
DOI : 10.21136/MB.2003.134006
Classification : 16D80, 16D90, 16S90, 18E40
Keywords: hereditary torsion theory; Goldie’s torsion theory; non-singular ring; precover class; cover class; torsionfree covers; lattices of torsion theories
@article{10_21136_MB_2003_134006,
     author = {Bican, Ladislav},
     title = {Precovers and {Goldie{\textquoteright}s} torsion theory},
     journal = {Mathematica Bohemica},
     pages = {395--400},
     publisher = {mathdoc},
     volume = {128},
     number = {4},
     year = {2003},
     doi = {10.21136/MB.2003.134006},
     mrnumber = {2032476},
     zbl = {1057.16027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134006/}
}
TY  - JOUR
AU  - Bican, Ladislav
TI  - Precovers and Goldie’s torsion theory
JO  - Mathematica Bohemica
PY  - 2003
SP  - 395
EP  - 400
VL  - 128
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134006/
DO  - 10.21136/MB.2003.134006
LA  - en
ID  - 10_21136_MB_2003_134006
ER  - 
%0 Journal Article
%A Bican, Ladislav
%T Precovers and Goldie’s torsion theory
%J Mathematica Bohemica
%D 2003
%P 395-400
%V 128
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134006/
%R 10.21136/MB.2003.134006
%G en
%F 10_21136_MB_2003_134006
Bican, Ladislav. Precovers and Goldie’s torsion theory. Mathematica Bohemica, Tome 128 (2003) no. 4, pp. 395-400. doi : 10.21136/MB.2003.134006. http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.134006/

Cité par Sources :