Removability of singularities with anisotropic growth
Mathematica Bohemica, Tome 128 (2003) no. 1, pp. 1-19.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

With help of suitable anisotropic Minkowski’s contents and Hausdorff measures some results are obtained concerning removability of singularities for solutions of partial differential equations with anisotropic growth in the vicinity of the singular set.
DOI : 10.21136/MB.2003.133932
Classification : 28A12, 35A20, 35B05, 35B60, 35J30, 65Z05
Keywords: solutions of partial differential equations; removable singularities; anisotropic metric; Minkowski’s contents
@article{10_21136_MB_2003_133932,
     author = {Dont, Miroslav and Kr\'al, Josef, Jr.},
     title = {Removability of singularities with anisotropic~growth},
     journal = {Mathematica Bohemica},
     pages = {1--19},
     publisher = {mathdoc},
     volume = {128},
     number = {1},
     year = {2003},
     doi = {10.21136/MB.2003.133932},
     mrnumber = {1973420},
     zbl = {1015.35003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.133932/}
}
TY  - JOUR
AU  - Dont, Miroslav
AU  - Král, Josef, Jr.
TI  - Removability of singularities with anisotropic growth
JO  - Mathematica Bohemica
PY  - 2003
SP  - 1
EP  - 19
VL  - 128
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.133932/
DO  - 10.21136/MB.2003.133932
LA  - en
ID  - 10_21136_MB_2003_133932
ER  - 
%0 Journal Article
%A Dont, Miroslav
%A Král, Josef, Jr.
%T Removability of singularities with anisotropic growth
%J Mathematica Bohemica
%D 2003
%P 1-19
%V 128
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.133932/
%R 10.21136/MB.2003.133932
%G en
%F 10_21136_MB_2003_133932
Dont, Miroslav; Král, Josef, Jr. Removability of singularities with anisotropic growth. Mathematica Bohemica, Tome 128 (2003) no. 1, pp. 1-19. doi : 10.21136/MB.2003.133932. http://geodesic.mathdoc.fr/articles/10.21136/MB.2003.133932/

Cité par Sources :