Rectifiability and perimeter in step 2 Groups
Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 219-228.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study finite perimeter sets in step 2 Carnot groups. In this way we extend the classical De Giorgi’s theory, developed in Euclidean spaces by De Giorgi, as well as its generalization, considered by the authors, in Heisenberg groups. A structure theorem for sets of finite perimeter and consequently a divergence theorem are obtained. Full proofs of these results, comments and an exhaustive bibliography can be found in our preprint (2001).
DOI : 10.21136/MB.2002.134175
Classification : 22E30, 49Q15
Keywords: Carnot groups; perimeter; rectifiability; divergence theorem
@article{10_21136_MB_2002_134175,
     author = {Franchi, Bruno and Serapioni, Raul and Cassano, Francesco Serra},
     title = {Rectifiability and perimeter in step 2 {Groups}},
     journal = {Mathematica Bohemica},
     pages = {219--228},
     publisher = {mathdoc},
     volume = {127},
     number = {2},
     year = {2002},
     doi = {10.21136/MB.2002.134175},
     mrnumber = {1981527},
     zbl = {1018.49029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134175/}
}
TY  - JOUR
AU  - Franchi, Bruno
AU  - Serapioni, Raul
AU  - Cassano, Francesco Serra
TI  - Rectifiability and perimeter in step 2 Groups
JO  - Mathematica Bohemica
PY  - 2002
SP  - 219
EP  - 228
VL  - 127
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134175/
DO  - 10.21136/MB.2002.134175
LA  - en
ID  - 10_21136_MB_2002_134175
ER  - 
%0 Journal Article
%A Franchi, Bruno
%A Serapioni, Raul
%A Cassano, Francesco Serra
%T Rectifiability and perimeter in step 2 Groups
%J Mathematica Bohemica
%D 2002
%P 219-228
%V 127
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134175/
%R 10.21136/MB.2002.134175
%G en
%F 10_21136_MB_2002_134175
Franchi, Bruno; Serapioni, Raul; Cassano, Francesco Serra. Rectifiability and perimeter in step 2 Groups. Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 219-228. doi : 10.21136/MB.2002.134175. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134175/

Cité par Sources :