On singularly perturbed ordinary differential equations with measure-valued limits
Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 139-152.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The limit behaviour of solutions of a singularly perturbed system is examined in the case where the fast flow need not converge to a stationary point. The topological convergence as well as information about the distribution of the values of the solutions can be determined in the case that the support of the limit invariant measure of the fast flow is an asymptotically stable attractor.
DOI : 10.21136/MB.2002.134168
Classification : 34D15, 34D45, 34E10, 34E15
Keywords: singular perturbations; invariant measures; slow and fast motions
@article{10_21136_MB_2002_134168,
     author = {Artstein, Zvi},
     title = {On singularly perturbed ordinary differential equations with measure-valued limits},
     journal = {Mathematica Bohemica},
     pages = {139--152},
     publisher = {mathdoc},
     volume = {127},
     number = {2},
     year = {2002},
     doi = {10.21136/MB.2002.134168},
     mrnumber = {1981520},
     zbl = {1016.34057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134168/}
}
TY  - JOUR
AU  - Artstein, Zvi
TI  - On singularly perturbed ordinary differential equations with measure-valued limits
JO  - Mathematica Bohemica
PY  - 2002
SP  - 139
EP  - 152
VL  - 127
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134168/
DO  - 10.21136/MB.2002.134168
LA  - en
ID  - 10_21136_MB_2002_134168
ER  - 
%0 Journal Article
%A Artstein, Zvi
%T On singularly perturbed ordinary differential equations with measure-valued limits
%J Mathematica Bohemica
%D 2002
%P 139-152
%V 127
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134168/
%R 10.21136/MB.2002.134168
%G en
%F 10_21136_MB_2002_134168
Artstein, Zvi. On singularly perturbed ordinary differential equations with measure-valued limits. Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 139-152. doi : 10.21136/MB.2002.134168. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134168/

Cité par Sources :