Differential equations in metric spaces
Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 353-360.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give a meaning to derivative of a function $u\:\mathbb{R}\rightarrow X$, where $X$ is a complete metric space. This enables us to investigate differential equations in a metric space. One can prove in particular Gronwall’s Lemma, Peano and Picard Existence Theorems, Lyapunov Theorem or Nagumo Theorem in metric spaces. The main idea is to define the tangent space ${\mathcal T}_xX$ of $x \in X$. Let $u,v\:[0,1) \rightarrow X$, $u(0)=v(0)$ be continuous at zero. Then by the definition $u$ and $v$ are in the same equivalence class if they are tangent at zero, that is if \[ \lim _{h \rightarrow 0^+} \frac{d(u(h),v(h))}{h}=0. \] By ${\mathcal T}_xX$ we denote the set of all equivalence classes of continuous at zero functions $u\:[0,1) \rightarrow X$, $u(0)=x$, and by ${\mathcal T}X$ the disjoint sum of all ${\mathcal T}_xX$ over $x \in X$. By $u^{\prime }(t) \in {\mathcal T}_{u(t)}X$, where $u\:\mathbb{R}\rightarrow X$, we understand the equivalence class of a function $[0,1) \ni h \rightarrow u(t+h) \in X$. Given a function ${\mathcal F}\:X \rightarrow {\mathcal T}X$ such that ${\mathcal F}(x) \in {\mathcal T}_x X$ we are now able to investigate solutions to the differential equation $u^{\prime }(t)={\mathcal F}(u(t))$.
DOI : 10.21136/MB.2002.134163
Classification : 34-02, 34A12, 34A25, 34A99, 34G99, 57R25
Keywords: differential equation; tangent space
@article{10_21136_MB_2002_134163,
     author = {Tabor, Jacek},
     title = {Differential equations in metric spaces},
     journal = {Mathematica Bohemica},
     pages = {353--360},
     publisher = {mathdoc},
     volume = {127},
     number = {2},
     year = {2002},
     doi = {10.21136/MB.2002.134163},
     mrnumber = {1981539},
     zbl = {1015.34003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134163/}
}
TY  - JOUR
AU  - Tabor, Jacek
TI  - Differential equations in metric spaces
JO  - Mathematica Bohemica
PY  - 2002
SP  - 353
EP  - 360
VL  - 127
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134163/
DO  - 10.21136/MB.2002.134163
LA  - en
ID  - 10_21136_MB_2002_134163
ER  - 
%0 Journal Article
%A Tabor, Jacek
%T Differential equations in metric spaces
%J Mathematica Bohemica
%D 2002
%P 353-360
%V 127
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134163/
%R 10.21136/MB.2002.134163
%G en
%F 10_21136_MB_2002_134163
Tabor, Jacek. Differential equations in metric spaces. Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 353-360. doi : 10.21136/MB.2002.134163. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134163/

Cité par Sources :