Colouring polytopic partitions in $\mathbb{R}^d$
Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 251-264.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider face-to-face partitions of bounded polytopes into convex polytopes in $\mathbb{R}^d$ for arbitrary $d\ge 1$ and examine their colourability. In particular, we prove that the chromatic number of any simplicial partition does not exceed $d+1$. Partitions of polyhedra in $\mathbb{R}^3$ into pentahedra and hexahedra are $5$- and $6$-colourable, respectively. We show that the above numbers are attainable, i.e., in general, they cannot be reduced.
DOI : 10.21136/MB.2002.134161
Classification : 05C15, 51M20, 65N30
Keywords: colouring multidimensional maps; four colour theorem; chromatic number; tetrahedralization; convex polytopes; finite element methods; domain decomposition methods; parallel programming; combinatorial geometry; six colour conjecture
@article{10_21136_MB_2002_134161,
     author = {K\v{r}{\'\i}\v{z}ek, Michal},
     title = {Colouring polytopic partitions in $\mathbb{R}^d$},
     journal = {Mathematica Bohemica},
     pages = {251--264},
     publisher = {mathdoc},
     volume = {127},
     number = {2},
     year = {2002},
     doi = {10.21136/MB.2002.134161},
     mrnumber = {1981530},
     zbl = {1003.05042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134161/}
}
TY  - JOUR
AU  - Křížek, Michal
TI  - Colouring polytopic partitions in $\mathbb{R}^d$
JO  - Mathematica Bohemica
PY  - 2002
SP  - 251
EP  - 264
VL  - 127
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134161/
DO  - 10.21136/MB.2002.134161
LA  - en
ID  - 10_21136_MB_2002_134161
ER  - 
%0 Journal Article
%A Křížek, Michal
%T Colouring polytopic partitions in $\mathbb{R}^d$
%J Mathematica Bohemica
%D 2002
%P 251-264
%V 127
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134161/
%R 10.21136/MB.2002.134161
%G en
%F 10_21136_MB_2002_134161
Křížek, Michal. Colouring polytopic partitions in $\mathbb{R}^d$. Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 251-264. doi : 10.21136/MB.2002.134161. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134161/

Cité par Sources :