Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in $L_p$-spaces
Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 311-327.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Several abstract model problems of elliptic and parabolic type with inhomogeneous initial and boundary data are discussed. By means of a variant of the Dore-Venni theorem, real and complex interpolation, and trace theorems, optimal $L_p$-regularity is shown. By means of this purely operator theoretic approach, classical results on $L_p$-regularity of the diffusion equation with inhomogeneous Dirichlet or Neumann or Robin condition are recovered. An application to a dynamic boundary value problem with surface diffusion for the diffusion equation is included.
DOI : 10.21136/MB.2002.134160
Classification : 34G10, 35G10, 35K20, 35K90, 45K05, 47D06
Keywords: maximal regularity; sectorial operators; interpolation; trace theorems; elliptic and parabolic initial-boundary value problems; dynamic boundary conditions
@article{10_21136_MB_2002_134160,
     author = {Pr\"uss, Jan},
     title = {Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in~$L_p$-spaces},
     journal = {Mathematica Bohemica},
     pages = {311--327},
     publisher = {mathdoc},
     volume = {127},
     number = {2},
     year = {2002},
     doi = {10.21136/MB.2002.134160},
     mrnumber = {1981536},
     zbl = {1010.35064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134160/}
}
TY  - JOUR
AU  - Prüss, Jan
TI  - Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in $L_p$-spaces
JO  - Mathematica Bohemica
PY  - 2002
SP  - 311
EP  - 327
VL  - 127
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134160/
DO  - 10.21136/MB.2002.134160
LA  - en
ID  - 10_21136_MB_2002_134160
ER  - 
%0 Journal Article
%A Prüss, Jan
%T Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in $L_p$-spaces
%J Mathematica Bohemica
%D 2002
%P 311-327
%V 127
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134160/
%R 10.21136/MB.2002.134160
%G en
%F 10_21136_MB_2002_134160
Prüss, Jan. Maximal regularity for abstract parabolic problems with inhomogeneous boundary data in $L_p$-spaces. Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 311-327. doi : 10.21136/MB.2002.134160. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134160/

Cité par Sources :