Solvability problem for strong-nonlinear nondiagonal parabolic system
Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 131-138.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A class of $q$-nonlinear parabolic systems with a nondiagonal principal matrix and strong nonlinearities in the gradient is considered.We discuss the global in time solvability results of the classical initial boundary value problems in the case of two spatial variables. The systems with nonlinearities $q\in (1,2)$, $q=2$, $q>2$, are analyzed.
DOI : 10.21136/MB.2002.134158
Classification : 35K45, 35K50, 35K55, 35K60
Keywords: boundary value problems; nonlinear parabolic systems; solvability
@article{10_21136_MB_2002_134158,
     author = {Arkhipova, A. A.},
     title = {Solvability problem for strong-nonlinear nondiagonal parabolic system},
     journal = {Mathematica Bohemica},
     pages = {131--138},
     publisher = {mathdoc},
     volume = {127},
     number = {2},
     year = {2002},
     doi = {10.21136/MB.2002.134158},
     mrnumber = {1981519},
     zbl = {1009.35040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134158/}
}
TY  - JOUR
AU  - Arkhipova, A. A.
TI  - Solvability problem for strong-nonlinear nondiagonal parabolic system
JO  - Mathematica Bohemica
PY  - 2002
SP  - 131
EP  - 138
VL  - 127
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134158/
DO  - 10.21136/MB.2002.134158
LA  - en
ID  - 10_21136_MB_2002_134158
ER  - 
%0 Journal Article
%A Arkhipova, A. A.
%T Solvability problem for strong-nonlinear nondiagonal parabolic system
%J Mathematica Bohemica
%D 2002
%P 131-138
%V 127
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134158/
%R 10.21136/MB.2002.134158
%G en
%F 10_21136_MB_2002_134158
Arkhipova, A. A. Solvability problem for strong-nonlinear nondiagonal parabolic system. Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 131-138. doi : 10.21136/MB.2002.134158. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134158/

Cité par Sources :