On Fredholm alternative for certain quasilinear boundary value problems
Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 197-202.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the Dirichlet boundary value problem for the $p$-Laplacian of the form \[ -\Delta _p u~- \lambda _1 |u|^{p-2} u~= f \ \text{in} \Omega ,\quad u~= 0 \ \text{on} \partial \Omega , \] where $\Omega \subset {\mathbb{R}}^N$ is a bounded domain with smooth boundary $\partial \Omega $, $ N \ge 1$, $ p>1$, $ f \in C (\overline{\Omega })$ and $\lambda _1 > 0$ is the first eigenvalue of $\Delta _p$. We study the geometry of the energy functional \[ E_p(u) = \frac{1}{p} \int _{\Omega } |\nabla u|^p - \frac{\lambda _1}{p} \int _{\Omega } |u|^p - \int _{\Omega } fu \] and show the difference between the case $1$ and the case $p>2$. We also give the characterization of the right hand sides $f$ for which the above Dirichlet problem is solvable and has multiple solutions.
DOI : 10.21136/MB.2002.134157
Classification : 35B35, 35J20, 35J60, 35P30, 47J30, 49N10
Keywords: $p$-Laplacian; variational methods; PS condition; Fredholm alternative; upper and lower solutions
@article{10_21136_MB_2002_134157,
     author = {Dr\'abek, Pavel},
     title = {On {Fredholm} alternative for certain quasilinear boundary value problems},
     journal = {Mathematica Bohemica},
     pages = {197--202},
     publisher = {mathdoc},
     volume = {127},
     number = {2},
     year = {2002},
     doi = {10.21136/MB.2002.134157},
     mrnumber = {1981524},
     zbl = {1074.35035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134157/}
}
TY  - JOUR
AU  - Drábek, Pavel
TI  - On Fredholm alternative for certain quasilinear boundary value problems
JO  - Mathematica Bohemica
PY  - 2002
SP  - 197
EP  - 202
VL  - 127
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134157/
DO  - 10.21136/MB.2002.134157
LA  - en
ID  - 10_21136_MB_2002_134157
ER  - 
%0 Journal Article
%A Drábek, Pavel
%T On Fredholm alternative for certain quasilinear boundary value problems
%J Mathematica Bohemica
%D 2002
%P 197-202
%V 127
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134157/
%R 10.21136/MB.2002.134157
%G en
%F 10_21136_MB_2002_134157
Drábek, Pavel. On Fredholm alternative for certain quasilinear boundary value problems. Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 197-202. doi : 10.21136/MB.2002.134157. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134157/

Cité par Sources :