$N$-widths for singularly perturbed problems
Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 343-352.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Kolmogorov $N$-widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the $N$-widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.
DOI : 10.21136/MB.2002.134155
Classification : 34E15, 35B25, 35K57, 41A46, 65L10, 65L20, 65N15
Keywords: $N$-width; singularly perturbed; differential equation; boundary value problem; convection-diffusion; reaction-diffusion
@article{10_21136_MB_2002_134155,
     author = {Stynes, Martin and Kellogg, R. Bruce},
     title = {$N$-widths for singularly perturbed problems},
     journal = {Mathematica Bohemica},
     pages = {343--352},
     publisher = {mathdoc},
     volume = {127},
     number = {2},
     year = {2002},
     doi = {10.21136/MB.2002.134155},
     mrnumber = {1981538},
     zbl = {1005.41009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134155/}
}
TY  - JOUR
AU  - Stynes, Martin
AU  - Kellogg, R. Bruce
TI  - $N$-widths for singularly perturbed problems
JO  - Mathematica Bohemica
PY  - 2002
SP  - 343
EP  - 352
VL  - 127
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134155/
DO  - 10.21136/MB.2002.134155
LA  - en
ID  - 10_21136_MB_2002_134155
ER  - 
%0 Journal Article
%A Stynes, Martin
%A Kellogg, R. Bruce
%T $N$-widths for singularly perturbed problems
%J Mathematica Bohemica
%D 2002
%P 343-352
%V 127
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134155/
%R 10.21136/MB.2002.134155
%G en
%F 10_21136_MB_2002_134155
Stynes, Martin; Kellogg, R. Bruce. $N$-widths for singularly perturbed problems. Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 343-352. doi : 10.21136/MB.2002.134155. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134155/

Cité par Sources :