Radical classes of distributive lattices having the least element
Mathematica Bohemica, Tome 127 (2002) no. 3, pp. 409-425.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathcal D$ be the system of all distributive lattices and let $\mathcal D_0$ be the system of all $L\in \mathcal D$ such that $L$ possesses the least element. Further, let $\mathcal D_1$ be the system of all infinitely distributive lattices belonging to $\mathcal D_0$. In the present paper we investigate the radical classes of the systems $\mathcal D$, $\mathcal D_0$ and $\mathcal D_1$.
DOI : 10.21136/MB.2002.134071
Classification : 06D05, 06D10
Keywords: distributive lattice; infinite distributivity; radical class
@article{10_21136_MB_2002_134071,
     author = {Jakub{\'\i}k, J\'an},
     title = {Radical classes of distributive lattices having the least element},
     journal = {Mathematica Bohemica},
     pages = {409--425},
     publisher = {mathdoc},
     volume = {127},
     number = {3},
     year = {2002},
     doi = {10.21136/MB.2002.134071},
     mrnumber = {1931325},
     zbl = {1007.06009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134071/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Radical classes of distributive lattices having the least element
JO  - Mathematica Bohemica
PY  - 2002
SP  - 409
EP  - 425
VL  - 127
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134071/
DO  - 10.21136/MB.2002.134071
LA  - en
ID  - 10_21136_MB_2002_134071
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Radical classes of distributive lattices having the least element
%J Mathematica Bohemica
%D 2002
%P 409-425
%V 127
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134071/
%R 10.21136/MB.2002.134071
%G en
%F 10_21136_MB_2002_134071
Jakubík, Ján. Radical classes of distributive lattices having the least element. Mathematica Bohemica, Tome 127 (2002) no. 3, pp. 409-425. doi : 10.21136/MB.2002.134071. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134071/

Cité par Sources :