On the connectivity of skeletons of pseudomanifolds with boundary
Mathematica Bohemica, Tome 127 (2002) no. 3, pp. 375-384.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note we show that $1$-skeletons and $2$-skeletons of $n$-pseudomanifolds with full boundary are $(n+1)$-connected graphs and $n$-connected $2$-complexes, respectively. This generalizes previous results due to Barnette and Woon.
DOI : 10.21136/MB.2002.134070
Classification : 05C40, 57M20, 57Q05
Keywords: connectivity; graph; 2-complex; pseudomanifolds
@article{10_21136_MB_2002_134070,
     author = {Ayala, R. and Ch\'avez, M. J. and M\'arquez, A. and Quintero, A.},
     title = {On the connectivity of skeletons of pseudomanifolds with boundary},
     journal = {Mathematica Bohemica},
     pages = {375--384},
     publisher = {mathdoc},
     volume = {127},
     number = {3},
     year = {2002},
     doi = {10.21136/MB.2002.134070},
     mrnumber = {1931322},
     zbl = {1003.05066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134070/}
}
TY  - JOUR
AU  - Ayala, R.
AU  - Chávez, M. J.
AU  - Márquez, A.
AU  - Quintero, A.
TI  - On the connectivity of skeletons of pseudomanifolds with boundary
JO  - Mathematica Bohemica
PY  - 2002
SP  - 375
EP  - 384
VL  - 127
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134070/
DO  - 10.21136/MB.2002.134070
LA  - en
ID  - 10_21136_MB_2002_134070
ER  - 
%0 Journal Article
%A Ayala, R.
%A Chávez, M. J.
%A Márquez, A.
%A Quintero, A.
%T On the connectivity of skeletons of pseudomanifolds with boundary
%J Mathematica Bohemica
%D 2002
%P 375-384
%V 127
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134070/
%R 10.21136/MB.2002.134070
%G en
%F 10_21136_MB_2002_134070
Ayala, R.; Chávez, M. J.; Márquez, A.; Quintero, A. On the connectivity of skeletons of pseudomanifolds with boundary. Mathematica Bohemica, Tome 127 (2002) no. 3, pp. 375-384. doi : 10.21136/MB.2002.134070. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134070/

Cité par Sources :