Characterization of semientire graphs with crossing number 2
Mathematica Bohemica, Tome 127 (2002) no. 3, pp. 361-369.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The purpose of this paper is to give characterizations of graphs whose vertex-semientire graphs and edge-semientire graphs have crossing number 2. In addition, we establish necessary and sufficient conditions in terms of forbidden subgraphs for vertex-semientire graphs and edge-semientire graphs to have crossing number 2.
DOI : 10.21136/MB.2002.134067
Classification : 05C10, 05C50, 05C75, 05C99
Keywords: semientire graph; vertex-semientire graph; edge-semientire graph; crossing number; forbidden subgraph; homeomorphic graphs
@article{10_21136_MB_2002_134067,
     author = {Akka, D. G. and Bano, J. K.},
     title = {Characterization of semientire graphs with crossing number~2},
     journal = {Mathematica Bohemica},
     pages = {361--369},
     publisher = {mathdoc},
     volume = {127},
     number = {3},
     year = {2002},
     doi = {10.21136/MB.2002.134067},
     mrnumber = {1931320},
     zbl = {1003.05086},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134067/}
}
TY  - JOUR
AU  - Akka, D. G.
AU  - Bano, J. K.
TI  - Characterization of semientire graphs with crossing number 2
JO  - Mathematica Bohemica
PY  - 2002
SP  - 361
EP  - 369
VL  - 127
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134067/
DO  - 10.21136/MB.2002.134067
LA  - en
ID  - 10_21136_MB_2002_134067
ER  - 
%0 Journal Article
%A Akka, D. G.
%A Bano, J. K.
%T Characterization of semientire graphs with crossing number 2
%J Mathematica Bohemica
%D 2002
%P 361-369
%V 127
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134067/
%R 10.21136/MB.2002.134067
%G en
%F 10_21136_MB_2002_134067
Akka, D. G.; Bano, J. K. Characterization of semientire graphs with crossing number 2. Mathematica Bohemica, Tome 127 (2002) no. 3, pp. 361-369. doi : 10.21136/MB.2002.134067. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134067/

Cité par Sources :