Cantor-Bernstein theorem for lattices
Mathematica Bohemica, Tome 127 (2002) no. 3, pp. 463-471.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper is a continuation of a previous author’s article; the result is now extended to the case when the lattice under consideration need not have the least element.
DOI : 10.21136/MB.2002.134062
Classification : 06B05
Keywords: lattice; direct product decomposition; Cantor-Bernstein Theorem
@article{10_21136_MB_2002_134062,
     author = {Jakub{\'\i}k, J\'an},
     title = {Cantor-Bernstein theorem for lattices},
     journal = {Mathematica Bohemica},
     pages = {463--471},
     publisher = {mathdoc},
     volume = {127},
     number = {3},
     year = {2002},
     doi = {10.21136/MB.2002.134062},
     mrnumber = {1931330},
     zbl = {1007.06005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134062/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Cantor-Bernstein theorem for lattices
JO  - Mathematica Bohemica
PY  - 2002
SP  - 463
EP  - 471
VL  - 127
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134062/
DO  - 10.21136/MB.2002.134062
LA  - en
ID  - 10_21136_MB_2002_134062
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Cantor-Bernstein theorem for lattices
%J Mathematica Bohemica
%D 2002
%P 463-471
%V 127
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134062/
%R 10.21136/MB.2002.134062
%G en
%F 10_21136_MB_2002_134062
Jakubík, Ján. Cantor-Bernstein theorem for lattices. Mathematica Bohemica, Tome 127 (2002) no. 3, pp. 463-471. doi : 10.21136/MB.2002.134062. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134062/

Cité par Sources :