On general solvability properties of $p$-Lapalacian-like equations
Mathematica Bohemica, Tome 127 (2002) no. 1, pp. 103-122.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We discuss how the choice of the functional setting and the definition of the weak solution affect the existence and uniqueness of the solution to the equation \[ -\Delta _p u = f \ \text{in} \ \Omega , \] where $\Omega $ is a very general domain in $\mathbb{R}^N$, including the case $\Omega = \mathbb{R}^N$.
DOI : 10.21136/MB.2002.133987
Classification : 35B40, 35J15, 35J20, 35J60
Keywords: quasilinear elliptic equations; weak solutions; solvability
@article{10_21136_MB_2002_133987,
     author = {Dr\'abek, Pavel and Simader, Christian G.},
     title = {On general solvability properties of $p${-Lapalacian-like} equations},
     journal = {Mathematica Bohemica},
     pages = {103--122},
     publisher = {mathdoc},
     volume = {127},
     number = {1},
     year = {2002},
     doi = {10.21136/MB.2002.133987},
     mrnumber = {1895250},
     zbl = {1030.35058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133987/}
}
TY  - JOUR
AU  - Drábek, Pavel
AU  - Simader, Christian G.
TI  - On general solvability properties of $p$-Lapalacian-like equations
JO  - Mathematica Bohemica
PY  - 2002
SP  - 103
EP  - 122
VL  - 127
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133987/
DO  - 10.21136/MB.2002.133987
LA  - en
ID  - 10_21136_MB_2002_133987
ER  - 
%0 Journal Article
%A Drábek, Pavel
%A Simader, Christian G.
%T On general solvability properties of $p$-Lapalacian-like equations
%J Mathematica Bohemica
%D 2002
%P 103-122
%V 127
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133987/
%R 10.21136/MB.2002.133987
%G en
%F 10_21136_MB_2002_133987
Drábek, Pavel; Simader, Christian G. On general solvability properties of $p$-Lapalacian-like equations. Mathematica Bohemica, Tome 127 (2002) no. 1, pp. 103-122. doi : 10.21136/MB.2002.133987. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133987/

Cité par Sources :