On signed edge domination numbers of trees
Mathematica Bohemica, Tome 127 (2002) no. 1, pp. 49-55.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The signed edge domination number of a graph is an edge variant of the signed domination number. The closed neighbourhood $N_G[e]$ of an edge $e$ in a graph $G$ is the set consisting of $e$ and of all edges having a common end vertex with $e$. Let $f$ be a mapping of the edge set $E(G)$ of $G$ into the set $\lbrace -1,1\rbrace $. If $\sum _{x\in N[e]} f(x)\ge 1$ for each $e\in E(G)$, then $f$ is called a signed edge dominating function on $G$. The minimum of the values $\sum _{x\in E(G)} f(x)$, taken over all signed edge dominating function $f$ on $G$, is called the signed edge domination number of $G$ and is denoted by $\gamma ^{\prime }_s(G)$. If instead of the closed neighbourhood $N_G[e]$ we use the open neighbourhood $N_G(e)=N_G[e]-\lbrace e\rbrace $, we obtain the definition of the signed edge total domination number $\gamma ^{\prime }_{st}(G)$ of $G$. In this paper these concepts are studied for trees. The number $\gamma ^{\prime }_s(T)$ is determined for $T$ being a star of a path or a caterpillar. Moreover, also $\gamma ^{\prime }_s(C_n)$ for a circuit of length $n$ is determined. For a tree satisfying a certain condition the inequality $\gamma ^{\prime }_s(T) \ge \gamma ^{\prime }(T)$ is stated. An existence theorem for a tree $T$ with a given number of edges and given signed edge domination number is proved. At the end similar results are obtained for $\gamma ^{\prime }_{st}(T)$.
DOI : 10.21136/MB.2002.133984
Classification : 05C05, 05C69
Keywords: tree; signed edge domination number; signed edge total domination number
@article{10_21136_MB_2002_133984,
     author = {Zelinka, Bohdan},
     title = {On signed edge domination numbers of trees},
     journal = {Mathematica Bohemica},
     pages = {49--55},
     publisher = {mathdoc},
     volume = {127},
     number = {1},
     year = {2002},
     doi = {10.21136/MB.2002.133984},
     mrnumber = {1895246},
     zbl = {0995.05112},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133984/}
}
TY  - JOUR
AU  - Zelinka, Bohdan
TI  - On signed edge domination numbers of trees
JO  - Mathematica Bohemica
PY  - 2002
SP  - 49
EP  - 55
VL  - 127
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133984/
DO  - 10.21136/MB.2002.133984
LA  - en
ID  - 10_21136_MB_2002_133984
ER  - 
%0 Journal Article
%A Zelinka, Bohdan
%T On signed edge domination numbers of trees
%J Mathematica Bohemica
%D 2002
%P 49-55
%V 127
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133984/
%R 10.21136/MB.2002.133984
%G en
%F 10_21136_MB_2002_133984
Zelinka, Bohdan. On signed edge domination numbers of trees. Mathematica Bohemica, Tome 127 (2002) no. 1, pp. 49-55. doi : 10.21136/MB.2002.133984. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133984/

Cité par Sources :