The 3-path-step operator on trees and unicyclic graphs
Mathematica Bohemica, Tome 127 (2002) no. 1, pp. 33-40.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

E. Prisner in his book Graph Dynamics defines the $k$-path-step operator on the class of finite graphs. The $k$-path-step operator (for a positive integer $k$) is the operator $S^{\prime }_k$ which to every finite graph $G$ assigns the graph $S^{\prime }_k(G)$ which has the same vertex set as $G$ and in which two vertices are adjacent if and only if there exists a path of length $k$ in $G$ connecting them. In the paper the trees and the unicyclic graphs fixed in the operator $S^{\prime }_3$ are studied.
DOI : 10.21136/MB.2002.133982
Classification : 05C05, 05C38
Keywords: 3-path-step graph operator; tree; unicyclic graph
@article{10_21136_MB_2002_133982,
     author = {Zelinka, Bohdan},
     title = {The 3-path-step operator on trees and unicyclic graphs},
     journal = {Mathematica Bohemica},
     pages = {33--40},
     publisher = {mathdoc},
     volume = {127},
     number = {1},
     year = {2002},
     doi = {10.21136/MB.2002.133982},
     mrnumber = {1895244},
     zbl = {0995.05076},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133982/}
}
TY  - JOUR
AU  - Zelinka, Bohdan
TI  - The 3-path-step operator on trees and unicyclic graphs
JO  - Mathematica Bohemica
PY  - 2002
SP  - 33
EP  - 40
VL  - 127
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133982/
DO  - 10.21136/MB.2002.133982
LA  - en
ID  - 10_21136_MB_2002_133982
ER  - 
%0 Journal Article
%A Zelinka, Bohdan
%T The 3-path-step operator on trees and unicyclic graphs
%J Mathematica Bohemica
%D 2002
%P 33-40
%V 127
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133982/
%R 10.21136/MB.2002.133982
%G en
%F 10_21136_MB_2002_133982
Zelinka, Bohdan. The 3-path-step operator on trees and unicyclic graphs. Mathematica Bohemica, Tome 127 (2002) no. 1, pp. 33-40. doi : 10.21136/MB.2002.133982. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133982/

Cité par Sources :