Positive solutions of inequality with $p$-Laplacian in exterior domains
Mathematica Bohemica, Tome 127 (2002) no. 4, pp. 597-604.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the paper the differential inequality \[\Delta _p u+B(x,u)\le 0,\] where $\Delta _p u=\div (\Vert \nabla u\Vert ^{p-2}\nabla u)$, $p>1$, $B(x,u)\in C(\mathbb{R}^{n}\times \mathbb{R},\mathbb{R})$ is studied. Sufficient conditions on the function $B(x,u)$ are established, which guarantee nonexistence of an eventually positive solution. The generalized Riccati transformation is the main tool.
DOI : 10.21136/MB.2002.133960
Classification : 35B05, 35J60, 35R45
Keywords: $p$-Laplacian; oscillation criteria
@article{10_21136_MB_2002_133960,
     author = {Ma\v{r}{\'\i}k, Robert},
     title = {Positive solutions of inequality with $p${-Laplacian} in exterior domains},
     journal = {Mathematica Bohemica},
     pages = {597--604},
     publisher = {mathdoc},
     volume = {127},
     number = {4},
     year = {2002},
     doi = {10.21136/MB.2002.133960},
     mrnumber = {1942645},
     zbl = {1074.35505},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133960/}
}
TY  - JOUR
AU  - Mařík, Robert
TI  - Positive solutions of inequality with $p$-Laplacian in exterior domains
JO  - Mathematica Bohemica
PY  - 2002
SP  - 597
EP  - 604
VL  - 127
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133960/
DO  - 10.21136/MB.2002.133960
LA  - en
ID  - 10_21136_MB_2002_133960
ER  - 
%0 Journal Article
%A Mařík, Robert
%T Positive solutions of inequality with $p$-Laplacian in exterior domains
%J Mathematica Bohemica
%D 2002
%P 597-604
%V 127
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133960/
%R 10.21136/MB.2002.133960
%G en
%F 10_21136_MB_2002_133960
Mařík, Robert. Positive solutions of inequality with $p$-Laplacian in exterior domains. Mathematica Bohemica, Tome 127 (2002) no. 4, pp. 597-604. doi : 10.21136/MB.2002.133960. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133960/

Cité par Sources :