On a generalized Dhombres functional equation. II.
Mathematica Bohemica, Tome 127 (2002) no. 4, pp. 547-555.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the functional equation $f(xf(x))=\varphi (f(x))$ where $\varphi \: J\rightarrow J$ is a given increasing homeomorphism of an open interval $J\subset (0,\infty )$ and $f\:(0,\infty )\rightarrow J$ is an unknown continuous function. In a previous paper we proved that no continuous solution can cross the line $y=p$ where $p$ is a fixed point of $\varphi $, with a possible exception for $p=1$. The range of any non-constant continuous solution is an interval whose end-points are fixed by $\varphi $ and which contains in its interior no fixed point except for $1$. We also gave a characterization of the class of continuous monotone solutions and proved a sufficient condition for any continuous function to be monotone. In the present paper we give a characterization of the equations (or equivalently, of the functions $\varphi $) which have all continuous solutions monotone. In particular, all continuous solutions are monotone if either (i) 1 is an end-point of $J$ and $J$ contains no fixed point of $\varphi $, or (ii) $1\in J$ and $J$ contains no fixed points different from 1.
DOI : 10.21136/MB.2002.133958
Classification : 26A18, 39B12, 39B22
Keywords: iterative functional equation; invariant curves; monotone solutions
@article{10_21136_MB_2002_133958,
     author = {Kahlig, P. and Sm{\'\i}tal, J.},
     title = {On a generalized {Dhombres} functional equation. {II.}},
     journal = {Mathematica Bohemica},
     pages = {547--555},
     publisher = {mathdoc},
     volume = {127},
     number = {4},
     year = {2002},
     doi = {10.21136/MB.2002.133958},
     mrnumber = {1942640},
     zbl = {1007.39016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133958/}
}
TY  - JOUR
AU  - Kahlig, P.
AU  - Smítal, J.
TI  - On a generalized Dhombres functional equation. II.
JO  - Mathematica Bohemica
PY  - 2002
SP  - 547
EP  - 555
VL  - 127
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133958/
DO  - 10.21136/MB.2002.133958
LA  - en
ID  - 10_21136_MB_2002_133958
ER  - 
%0 Journal Article
%A Kahlig, P.
%A Smítal, J.
%T On a generalized Dhombres functional equation. II.
%J Mathematica Bohemica
%D 2002
%P 547-555
%V 127
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133958/
%R 10.21136/MB.2002.133958
%G en
%F 10_21136_MB_2002_133958
Kahlig, P.; Smítal, J. On a generalized Dhombres functional equation. II.. Mathematica Bohemica, Tome 127 (2002) no. 4, pp. 547-555. doi : 10.21136/MB.2002.133958. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133958/

Cité par Sources :