On $k$-strong distance in strong digraphs
Mathematica Bohemica, Tome 127 (2002) no. 4, pp. 557-570.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a nonempty set $S$ of vertices in a strong digraph $D$, the strong distance $d(S)$ is the minimum size of a strong subdigraph of $D$ containing the vertices of $S$. If $S$ contains $k$ vertices, then $d(S)$ is referred to as the $k$-strong distance of $S$. For an integer $k \ge 2$ and a vertex $v$ of a strong digraph $D$, the $k$-strong eccentricity $\mathop {\mathrm se}_k(v)$ of $v$ is the maximum $k$-strong distance $d(S)$ among all sets $S$ of $k$ vertices in $D$ containing $v$. The minimum $k$-strong eccentricity among the vertices of $D$ is its $k$-strong radius $\mathop {\mathrm srad}_k D$ and the maximum $k$-strong eccentricity is its $k$-strong diameter $_k D$. The $k$-strong center ($k$-strong periphery) of $D$ is the subdigraph of $D$ induced by those vertices of $k$-strong eccentricity $\mathop {\mathrm srad}_k(D)$ ($_k (D)$). It is shown that, for each integer $k \ge 2$, every oriented graph is the $k$-strong center of some strong oriented graph. A strong oriented graph $D$ is called strongly $k$-self-centered if $D$ is its own $k$-strong center. For every integer $r \ge 6$, there exist infinitely many strongly 3-self-centered oriented graphs of 3-strong radius $r$. The problem of determining those oriented graphs that are $k$-strong peripheries of strong oriented graphs is studied.
DOI : 10.21136/MB.2002.133957
Classification : 05C12, 05C20
Keywords: strong distance; strong eccentricity; strong center; strong periphery
@article{10_21136_MB_2002_133957,
     author = {Zhang, Ping},
     title = {On $k$-strong distance in strong digraphs},
     journal = {Mathematica Bohemica},
     pages = {557--570},
     publisher = {mathdoc},
     volume = {127},
     number = {4},
     year = {2002},
     doi = {10.21136/MB.2002.133957},
     mrnumber = {1942641},
     zbl = {1003.05037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133957/}
}
TY  - JOUR
AU  - Zhang, Ping
TI  - On $k$-strong distance in strong digraphs
JO  - Mathematica Bohemica
PY  - 2002
SP  - 557
EP  - 570
VL  - 127
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133957/
DO  - 10.21136/MB.2002.133957
LA  - en
ID  - 10_21136_MB_2002_133957
ER  - 
%0 Journal Article
%A Zhang, Ping
%T On $k$-strong distance in strong digraphs
%J Mathematica Bohemica
%D 2002
%P 557-570
%V 127
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133957/
%R 10.21136/MB.2002.133957
%G en
%F 10_21136_MB_2002_133957
Zhang, Ping. On $k$-strong distance in strong digraphs. Mathematica Bohemica, Tome 127 (2002) no. 4, pp. 557-570. doi : 10.21136/MB.2002.133957. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133957/

Cité par Sources :