A nonexistence result for the Kurzweil integral
Mathematica Bohemica, Tome 127 (2002) no. 4, pp. 571-580.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown that there exist a continuous function $f$ and a regulated function $g$ defined on the interval $[0,1]$ such that $g$ vanishes everywhere except for a countable set, and the $K^*$-integral of $f$ with respect to $g$ does not exist. The problem was motivated by extensions of evolution variational inequalities to the space of regulated functions.
DOI : 10.21136/MB.2002.133949
Classification : 26A39, 26A42
Keywords: Kurzweil integral; regulated functions
@article{10_21136_MB_2002_133949,
     author = {Krej\v{c}{\'\i}, Pavel and Kurzweil, Jaroslav},
     title = {A nonexistence result for the {Kurzweil} integral},
     journal = {Mathematica Bohemica},
     pages = {571--580},
     publisher = {mathdoc},
     volume = {127},
     number = {4},
     year = {2002},
     doi = {10.21136/MB.2002.133949},
     mrnumber = {1942642},
     zbl = {1005.26005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133949/}
}
TY  - JOUR
AU  - Krejčí, Pavel
AU  - Kurzweil, Jaroslav
TI  - A nonexistence result for the Kurzweil integral
JO  - Mathematica Bohemica
PY  - 2002
SP  - 571
EP  - 580
VL  - 127
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133949/
DO  - 10.21136/MB.2002.133949
LA  - en
ID  - 10_21136_MB_2002_133949
ER  - 
%0 Journal Article
%A Krejčí, Pavel
%A Kurzweil, Jaroslav
%T A nonexistence result for the Kurzweil integral
%J Mathematica Bohemica
%D 2002
%P 571-580
%V 127
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133949/
%R 10.21136/MB.2002.133949
%G en
%F 10_21136_MB_2002_133949
Krejčí, Pavel; Kurzweil, Jaroslav. A nonexistence result for the Kurzweil integral. Mathematica Bohemica, Tome 127 (2002) no. 4, pp. 571-580. doi : 10.21136/MB.2002.133949. http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133949/

Cité par Sources :