A necessary and sufficient condition for the primality of Fermat numbers
Mathematica Bohemica, Tome 126 (2001) no. 3, pp. 541-549.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We examine primitive roots modulo the Fermat number $F_m=2^{2^m}+1$. We show that an odd integer $n\ge 3$ is a Fermat prime if and only if the set of primitive roots modulo $n$ is equal to the set of quadratic non-residues modulo $n$. This result is extended to primitive roots modulo twice a Fermat number.
DOI : 10.21136/MB.2001.134197
Classification : 11A07, 11A15, 11A41, 11A51
Keywords: Fermat numbers; primitive roots; primality; Sophie Germain primes
@article{10_21136_MB_2001_134197,
     author = {K\v{r}{\'\i}\v{z}ek, Michal and Somer, Lawrence},
     title = {A necessary and sufficient condition for the primality of {Fermat} numbers},
     journal = {Mathematica Bohemica},
     pages = {541--549},
     publisher = {mathdoc},
     volume = {126},
     number = {3},
     year = {2001},
     doi = {10.21136/MB.2001.134197},
     mrnumber = {1970256},
     zbl = {0993.11002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134197/}
}
TY  - JOUR
AU  - Křížek, Michal
AU  - Somer, Lawrence
TI  - A necessary and sufficient condition for the primality of Fermat numbers
JO  - Mathematica Bohemica
PY  - 2001
SP  - 541
EP  - 549
VL  - 126
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134197/
DO  - 10.21136/MB.2001.134197
LA  - en
ID  - 10_21136_MB_2001_134197
ER  - 
%0 Journal Article
%A Křížek, Michal
%A Somer, Lawrence
%T A necessary and sufficient condition for the primality of Fermat numbers
%J Mathematica Bohemica
%D 2001
%P 541-549
%V 126
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134197/
%R 10.21136/MB.2001.134197
%G en
%F 10_21136_MB_2001_134197
Křížek, Michal; Somer, Lawrence. A necessary and sufficient condition for the primality of Fermat numbers. Mathematica Bohemica, Tome 126 (2001) no. 3, pp. 541-549. doi : 10.21136/MB.2001.134197. http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134197/

Cité par Sources :