Pure subgroups
Mathematica Bohemica, Tome 126 (2001) no. 3, pp. 649-652.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\lambda $ be an infinite cardinal. Set $\lambda _0=\lambda $, define $\lambda _{i+1}=2^{\lambda _i}$ for every $i=0,1,\dots $, take $\mu $ as the first cardinal with $\lambda _i\mu $, $i=0,1,\dots $ and put $\kappa = (\mu ^{\aleph _0})^+$. If $F$ is a torsion-free group of cardinality at least $\kappa $ and $K$ is its subgroup such that $F/K$ is torsion and $|F/K|\le \lambda $, then $K$ contains a non-zero subgroup pure in $F$. This generalizes the result from a previous paper dealing with $F/K$ $p$-primary.
DOI : 10.21136/MB.2001.134196
Classification : 20K20, 20K27
Keywords: torsion-free abelian groups; pure subgroup; $P$-pure subgroup
@article{10_21136_MB_2001_134196,
     author = {Bican, Ladislav},
     title = {Pure subgroups},
     journal = {Mathematica Bohemica},
     pages = {649--652},
     publisher = {mathdoc},
     volume = {126},
     number = {3},
     year = {2001},
     doi = {10.21136/MB.2001.134196},
     mrnumber = {1970267},
     zbl = {0983.20054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134196/}
}
TY  - JOUR
AU  - Bican, Ladislav
TI  - Pure subgroups
JO  - Mathematica Bohemica
PY  - 2001
SP  - 649
EP  - 652
VL  - 126
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134196/
DO  - 10.21136/MB.2001.134196
LA  - en
ID  - 10_21136_MB_2001_134196
ER  - 
%0 Journal Article
%A Bican, Ladislav
%T Pure subgroups
%J Mathematica Bohemica
%D 2001
%P 649-652
%V 126
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134196/
%R 10.21136/MB.2001.134196
%G en
%F 10_21136_MB_2001_134196
Bican, Ladislav. Pure subgroups. Mathematica Bohemica, Tome 126 (2001) no. 3, pp. 649-652. doi : 10.21136/MB.2001.134196. http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134196/

Cité par Sources :