The period of a whirling pendulum
Mathematica Bohemica, Tome 126 (2001) no. 3, pp. 593-606.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The period function of a planar parameter-depending Hamiltonian system is examined. It is proved that, depending on the value of the parameter, it is either monotone or has exactly one critical point.
DOI : 10.21136/MB.2001.134193
Classification : 34C05, 37G15
Keywords: Hamiltonian system; period function; Picard-Fuchs equations
@article{10_21136_MB_2001_134193,
     author = {Lichardov\'a, Hana},
     title = {The period of a~whirling pendulum},
     journal = {Mathematica Bohemica},
     pages = {593--606},
     publisher = {mathdoc},
     volume = {126},
     number = {3},
     year = {2001},
     doi = {10.21136/MB.2001.134193},
     mrnumber = {1970262},
     zbl = {0977.37027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134193/}
}
TY  - JOUR
AU  - Lichardová, Hana
TI  - The period of a whirling pendulum
JO  - Mathematica Bohemica
PY  - 2001
SP  - 593
EP  - 606
VL  - 126
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134193/
DO  - 10.21136/MB.2001.134193
LA  - en
ID  - 10_21136_MB_2001_134193
ER  - 
%0 Journal Article
%A Lichardová, Hana
%T The period of a whirling pendulum
%J Mathematica Bohemica
%D 2001
%P 593-606
%V 126
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134193/
%R 10.21136/MB.2001.134193
%G en
%F 10_21136_MB_2001_134193
Lichardová, Hana. The period of a whirling pendulum. Mathematica Bohemica, Tome 126 (2001) no. 3, pp. 593-606. doi : 10.21136/MB.2001.134193. http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134193/

Cité par Sources :