Essential norms of the Neumann operator of the arithmetical mean
Mathematica Bohemica, Tome 126 (2001) no. 4, pp. 669-690.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $K\subset \mathbb{R}^m$ ($m\ge 2$) be a compact set; assume that each ball centered on the boundary $B$ of $K$ meets $K$ in a set of positive Lebesgue measure. Let ${C}_0^{(1)}$ be the class of all continuously differentiable real-valued functions with compact support in $\mathbb{R}^m$ and denote by $\sigma _m$ the area of the unit sphere in $\mathbb{R}^m$. With each $\varphi \in {C}_0^{(1)}$ we associate the function \[ W_K\varphi (z)={1\over \sigma _m}\underset{\mathbb{R}^m \setminus K}{\rightarrow }\int \mathop {\mathrm grad}\nolimits \varphi (x)\cdot {z-x\over |z-x|^m}\ x \] of the variable $z\in K$ (which is continuous in $K$ and harmonic in $K\setminus B$). $W_K\varphi $ depends only on the restriction $\varphi |_B$ of $\varphi $ to the boundary $B$ of $K$. This gives rise to a linear operator $W_K$ acting from the space ${C}^{(1)}(B)=\lbrace \varphi |_B; \varphi \in {C}_0^{(1)}\rbrace $ to the space ${C}(B)$ of all continuous functions on $B$. The operator ${T}_K$ sending each $f\in {C}^{(1)}(B)$ to ${T}_Kf=2W_Kf-f \in {C}(B)$ is called the Neumann operator of the arithmetical mean; it plays a significant role in connection with boundary value problems for harmonic functions. If $p$ is a norm on ${C}(B)\supset {C}^{(1)}(B)$ inducing the topology of uniform convergence and $G$ is the space of all compact linear operators acting on ${C}(B)$, then the associated $p$-essential norm of ${T}_K$ is given by \[ \omega _p {T}_K=\underset{Q\in {G}}{\rightarrow }\inf \sup \bigl \lbrace p[({T}_K-Q)f]; \ f\in {C}^{(1)}(B), \ p(f)\le 1\bigr \rbrace . \] In the present paper estimates (from above and from below) of $\omega _p {T}_K$ are obtained resulting in precise evaluation of $\omega _p {T}_K$ in geometric terms connected only with $K$.
DOI : 10.21136/MB.2001.134114
Classification : 31B10, 45P05, 47A30, 47G10
Keywords: double layer potential; Neumann’s operator of the arithmetical mean; essential norm
@article{10_21136_MB_2001_134114,
     author = {Kr\'al, Josef and Medkov\'a, Dagmar},
     title = {Essential norms of the {Neumann} operator of the arithmetical mean},
     journal = {Mathematica Bohemica},
     pages = {669--690},
     publisher = {mathdoc},
     volume = {126},
     number = {4},
     year = {2001},
     doi = {10.21136/MB.2001.134114},
     mrnumber = {1869461},
     zbl = {0998.31003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134114/}
}
TY  - JOUR
AU  - Král, Josef
AU  - Medková, Dagmar
TI  - Essential norms of the Neumann operator of the arithmetical mean
JO  - Mathematica Bohemica
PY  - 2001
SP  - 669
EP  - 690
VL  - 126
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134114/
DO  - 10.21136/MB.2001.134114
LA  - en
ID  - 10_21136_MB_2001_134114
ER  - 
%0 Journal Article
%A Král, Josef
%A Medková, Dagmar
%T Essential norms of the Neumann operator of the arithmetical mean
%J Mathematica Bohemica
%D 2001
%P 669-690
%V 126
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134114/
%R 10.21136/MB.2001.134114
%G en
%F 10_21136_MB_2001_134114
Král, Josef; Medková, Dagmar. Essential norms of the Neumann operator of the arithmetical mean. Mathematica Bohemica, Tome 126 (2001) no. 4, pp. 669-690. doi : 10.21136/MB.2001.134114. http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134114/

Cité par Sources :