Rank 1 convex hulls of isotropic functions in dimension 2 by 2
Mathematica Bohemica, Tome 126 (2001) no. 2, pp. 521-529.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $f$ be a rotationally invariant (with respect to the proper orthogonal group) function defined on the set $\text{M}^{2\times 2}$ of all $2$ by $2$ matrices. Based on conditions for the rank 1 convexity of $f$ in terms of signed invariants of $\mathbb{A}$ (to be defined below), an iterative procedure is given for calculating the rank 1 convex hull of a rotationally invariant function. A special case in which the procedure terminates after the second step is determined and examples of the actual calculations are given.
DOI : 10.21136/MB.2001.134029
Classification : 49J45, 74G65, 74N99
Keywords: rank 1 convexity; relaxation; stored energies
@article{10_21136_MB_2001_134029,
     author = {\v{S}ilhav\'y, M.},
     title = {Rank 1 convex hulls of isotropic functions in~dimension 2 by 2},
     journal = {Mathematica Bohemica},
     pages = {521--529},
     publisher = {mathdoc},
     volume = {126},
     number = {2},
     year = {2001},
     doi = {10.21136/MB.2001.134029},
     mrnumber = {1844288},
     zbl = {1070.49008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134029/}
}
TY  - JOUR
AU  - Šilhavý, M.
TI  - Rank 1 convex hulls of isotropic functions in dimension 2 by 2
JO  - Mathematica Bohemica
PY  - 2001
SP  - 521
EP  - 529
VL  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134029/
DO  - 10.21136/MB.2001.134029
LA  - en
ID  - 10_21136_MB_2001_134029
ER  - 
%0 Journal Article
%A Šilhavý, M.
%T Rank 1 convex hulls of isotropic functions in dimension 2 by 2
%J Mathematica Bohemica
%D 2001
%P 521-529
%V 126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134029/
%R 10.21136/MB.2001.134029
%G en
%F 10_21136_MB_2001_134029
Šilhavý, M. Rank 1 convex hulls of isotropic functions in dimension 2 by 2. Mathematica Bohemica, Tome 126 (2001) no. 2, pp. 521-529. doi : 10.21136/MB.2001.134029. http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134029/

Cité par Sources :