Simplified models of quantum fluids in nuclear physics
Mathematica Bohemica, Tome 126 (2001) no. 2, pp. 323-336.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We revisit a hydrodynamical model, derived by Wong from Time-Dependent-Hartree-Fock approximation, to obtain a simplified version of nuclear matter. We obtain well-posed problems of Navier-Stokes-Poisson-Yukawa type, with some unusual features due to quantum aspects, for which one can prove local existence. In the case of a one-dimensional nuclear slab, we can prove a result of global existence, by using a formal analogy with some model of nonlinear "viscoelastic" rods.
DOI : 10.21136/MB.2001.134011
Classification : 35Q35, 74D10, 76D05, 76N15, 76Y05, 81V35, 82D15
Keywords: compressible-Navier-Stokes-Schrödinger; time-dependent-Hartree-Fock approximation; local existence; global existence
@article{10_21136_MB_2001_134011,
     author = {Ducomet, B.},
     title = {Simplified models of quantum fluids in nuclear physics},
     journal = {Mathematica Bohemica},
     pages = {323--336},
     publisher = {mathdoc},
     volume = {126},
     number = {2},
     year = {2001},
     doi = {10.21136/MB.2001.134011},
     mrnumber = {1844272},
     zbl = {1050.76063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134011/}
}
TY  - JOUR
AU  - Ducomet, B.
TI  - Simplified models of quantum fluids in nuclear physics
JO  - Mathematica Bohemica
PY  - 2001
SP  - 323
EP  - 336
VL  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134011/
DO  - 10.21136/MB.2001.134011
LA  - en
ID  - 10_21136_MB_2001_134011
ER  - 
%0 Journal Article
%A Ducomet, B.
%T Simplified models of quantum fluids in nuclear physics
%J Mathematica Bohemica
%D 2001
%P 323-336
%V 126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134011/
%R 10.21136/MB.2001.134011
%G en
%F 10_21136_MB_2001_134011
Ducomet, B. Simplified models of quantum fluids in nuclear physics. Mathematica Bohemica, Tome 126 (2001) no. 2, pp. 323-336. doi : 10.21136/MB.2001.134011. http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134011/

Cité par Sources :