Steady-state buoyancy-driven viscous flow with measure data
Mathematica Bohemica, Tome 126 (2001) no. 2, pp. 493-504.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Steady-state system of equations for incompressible, possibly non-Newtonean of the $p$-power type, viscous flow coupled with the heat equation is considered in a smooth bounded domain $\Omega \subset \mathbb{R}^n$, $n=2$ or 3, with heat sources allowed to have a natural $L^1$-structure and even to be measures. The existence of a distributional solution is shown by a fixed-point technique for sufficiently small data if $p>3/2$ (for $n=2$) or if $p>9/5$ (for $n=3$).
DOI : 10.21136/MB.2001.134009
Classification : 35J60, 35Q35, 76A05, 76D03, 80A20
Keywords: non-Newtonean fluids; heat equation; dissipative heat; adiabatic heat
@article{10_21136_MB_2001_134009,
     author = {Roub{\'\i}\v{c}ek, Tom\'a\v{s}},
     title = {Steady-state buoyancy-driven viscous flow with measure data},
     journal = {Mathematica Bohemica},
     pages = {493--504},
     publisher = {mathdoc},
     volume = {126},
     number = {2},
     year = {2001},
     doi = {10.21136/MB.2001.134009},
     mrnumber = {1844286},
     zbl = {0981.35054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134009/}
}
TY  - JOUR
AU  - Roubíček, Tomáš
TI  - Steady-state buoyancy-driven viscous flow with measure data
JO  - Mathematica Bohemica
PY  - 2001
SP  - 493
EP  - 504
VL  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134009/
DO  - 10.21136/MB.2001.134009
LA  - en
ID  - 10_21136_MB_2001_134009
ER  - 
%0 Journal Article
%A Roubíček, Tomáš
%T Steady-state buoyancy-driven viscous flow with measure data
%J Mathematica Bohemica
%D 2001
%P 493-504
%V 126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134009/
%R 10.21136/MB.2001.134009
%G en
%F 10_21136_MB_2001_134009
Roubíček, Tomáš. Steady-state buoyancy-driven viscous flow with measure data. Mathematica Bohemica, Tome 126 (2001) no. 2, pp. 493-504. doi : 10.21136/MB.2001.134009. http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134009/

Cité par Sources :