On optimal decay rates for weak solutions to the Navier-Stokes equations in $R^n$
Mathematica Bohemica, Tome 126 (2001) no. 2, pp. 443-455.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper is concerned with optimal lower bounds of decay rates for solutions to the Navier-Stokes equations in $\mathbb{R}^n$. Necessary and sufficient conditions are given such that the corresponding Navier-Stokes solutions are shown to satisfy the algebraic bound \[ \Vert u(t) \Vert \ge (t+1)^{-\frac{n+4}{2}}. \]
DOI : 10.21136/MB.2001.134008
Classification : 35B40, 35B45, 35D99, 35Q10, 35Q30, 76D05
Keywords: decay rates; Navier-Stokes equations
@article{10_21136_MB_2001_134008,
     author = {Miyakawa, Tetsuro and Schonbek, Maria Elena},
     title = {On optimal decay rates for weak solutions to the {Navier-Stokes} equations in $R^n$},
     journal = {Mathematica Bohemica},
     pages = {443--455},
     publisher = {mathdoc},
     volume = {126},
     number = {2},
     year = {2001},
     doi = {10.21136/MB.2001.134008},
     mrnumber = {1844282},
     zbl = {0981.35048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134008/}
}
TY  - JOUR
AU  - Miyakawa, Tetsuro
AU  - Schonbek, Maria Elena
TI  - On optimal decay rates for weak solutions to the Navier-Stokes equations in $R^n$
JO  - Mathematica Bohemica
PY  - 2001
SP  - 443
EP  - 455
VL  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134008/
DO  - 10.21136/MB.2001.134008
LA  - en
ID  - 10_21136_MB_2001_134008
ER  - 
%0 Journal Article
%A Miyakawa, Tetsuro
%A Schonbek, Maria Elena
%T On optimal decay rates for weak solutions to the Navier-Stokes equations in $R^n$
%J Mathematica Bohemica
%D 2001
%P 443-455
%V 126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134008/
%R 10.21136/MB.2001.134008
%G en
%F 10_21136_MB_2001_134008
Miyakawa, Tetsuro; Schonbek, Maria Elena. On optimal decay rates for weak solutions to the Navier-Stokes equations in $R^n$. Mathematica Bohemica, Tome 126 (2001) no. 2, pp. 443-455. doi : 10.21136/MB.2001.134008. http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134008/

Cité par Sources :