On iterated limits of subsets of a convergence $\ell $-group
Mathematica Bohemica, Tome 126 (2001) no. 1, pp. 53-61.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we deal with the relation \[ \lim _\alpha \lim _\alpha X=\lim _\alpha X \] for a subset $X$ of $G$, where $G$ is an $\ell $-group and $\alpha $ is a sequential convergence on $G$.
DOI : 10.21136/MB.2001.133921
Classification : 06F15, 22C05
Keywords: convergence $\ell $-group; disjoint subset; direct product; lexico extension; sequential convergence
@article{10_21136_MB_2001_133921,
     author = {Jakub{\'\i}k, J\'an},
     title = {On iterated limits of subsets of a convergence $\ell $-group},
     journal = {Mathematica Bohemica},
     pages = {53--61},
     publisher = {mathdoc},
     volume = {126},
     number = {1},
     year = {2001},
     doi = {10.21136/MB.2001.133921},
     mrnumber = {1826470},
     zbl = {0978.06008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.133921/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On iterated limits of subsets of a convergence $\ell $-group
JO  - Mathematica Bohemica
PY  - 2001
SP  - 53
EP  - 61
VL  - 126
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.133921/
DO  - 10.21136/MB.2001.133921
LA  - en
ID  - 10_21136_MB_2001_133921
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On iterated limits of subsets of a convergence $\ell $-group
%J Mathematica Bohemica
%D 2001
%P 53-61
%V 126
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.133921/
%R 10.21136/MB.2001.133921
%G en
%F 10_21136_MB_2001_133921
Jakubík, Ján. On iterated limits of subsets of a convergence $\ell $-group. Mathematica Bohemica, Tome 126 (2001) no. 1, pp. 53-61. doi : 10.21136/MB.2001.133921. http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.133921/

Cité par Sources :