On the Volterra integral equation and axiomatic measures of weak noncompactness
Mathematica Bohemica, Tome 126 (2001) no. 1, pp. 183-190.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that a set of weak solutions of the nonlinear Volterra integral equation has the Kneser property. The main condition in our result is formulated in terms of axiomatic measures of weak noncompactness.
DOI : 10.21136/MB.2001.133913
Classification : 45D05, 45G10, 47H09
Keywords: measure of weak noncompactness; Volterra integral equation; nonlinear Volterra integral equation; Kneser property
@article{10_21136_MB_2001_133913,
     author = {Bugajewski, Dariusz},
     title = {On the {Volterra} integral equation and axiomatic measures of weak noncompactness},
     journal = {Mathematica Bohemica},
     pages = {183--190},
     publisher = {mathdoc},
     volume = {126},
     number = {1},
     year = {2001},
     doi = {10.21136/MB.2001.133913},
     mrnumber = {1826481},
     zbl = {0982.45002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.133913/}
}
TY  - JOUR
AU  - Bugajewski, Dariusz
TI  - On the Volterra integral equation and axiomatic measures of weak noncompactness
JO  - Mathematica Bohemica
PY  - 2001
SP  - 183
EP  - 190
VL  - 126
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.133913/
DO  - 10.21136/MB.2001.133913
LA  - en
ID  - 10_21136_MB_2001_133913
ER  - 
%0 Journal Article
%A Bugajewski, Dariusz
%T On the Volterra integral equation and axiomatic measures of weak noncompactness
%J Mathematica Bohemica
%D 2001
%P 183-190
%V 126
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.133913/
%R 10.21136/MB.2001.133913
%G en
%F 10_21136_MB_2001_133913
Bugajewski, Dariusz. On the Volterra integral equation and axiomatic measures of weak noncompactness. Mathematica Bohemica, Tome 126 (2001) no. 1, pp. 183-190. doi : 10.21136/MB.2001.133913. http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.133913/

Cité par Sources :