A tree as a finite nonempty set with a binary operation
Mathematica Bohemica, Tome 125 (2000) no. 4, pp. 455-458.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A (finite) acyclic connected graph is called a tree. Let $W$ be a finite nonempty set, and let $ H(W)$ be the set of all trees $T$ with the property that $W$ is the vertex set of $T$. We will find a one-to-one correspondence between $ H(W)$ and the set of all binary operations on $W$ which satisfy a certain set of three axioms (stated in this note).
DOI : 10.21136/MB.2000.126275
Classification : 05C05, 05C75, 20N02
Keywords: trees; geodetic graphs; binary operations
@article{10_21136_MB_2000_126275,
     author = {Nebesk\'y, Ladislav},
     title = {A tree as a finite nonempty set with a binary operation},
     journal = {Mathematica Bohemica},
     pages = {455--458},
     publisher = {mathdoc},
     volume = {125},
     number = {4},
     year = {2000},
     doi = {10.21136/MB.2000.126275},
     mrnumber = {1802293},
     zbl = {0963.05032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126275/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - A tree as a finite nonempty set with a binary operation
JO  - Mathematica Bohemica
PY  - 2000
SP  - 455
EP  - 458
VL  - 125
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126275/
DO  - 10.21136/MB.2000.126275
LA  - en
ID  - 10_21136_MB_2000_126275
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T A tree as a finite nonempty set with a binary operation
%J Mathematica Bohemica
%D 2000
%P 455-458
%V 125
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126275/
%R 10.21136/MB.2000.126275
%G en
%F 10_21136_MB_2000_126275
Nebeský, Ladislav. A tree as a finite nonempty set with a binary operation. Mathematica Bohemica, Tome 125 (2000) no. 4, pp. 455-458. doi : 10.21136/MB.2000.126275. http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126275/

Cité par Sources :