Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions
Mathematica Bohemica, Tome 125 (2000) no. 4, pp. 385-420.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Sufficient conditions for destabilizing effects of certain unilateral boundary conditions and for the existence of bifurcation points for spatial patterns to reaction-diffusion systems of the activator-inhibitor type are proved. The conditions are related with the mollification method employed to overcome difficulties connected with empty interiors of appropriate convex cones.
DOI : 10.21136/MB.2000.126272
Classification : 35B32, 35J85, 35K40, 35K57, 35K58, 47H04, 47N20
Keywords: bifurcation; spatial patterns; reaction-diffusion system; mollification; inclusions
@article{10_21136_MB_2000_126272,
     author = {Eisner, Jan},
     title = {Reaction-diffusion systems: {Destabilizing} effect of conditions given by inclusions},
     journal = {Mathematica Bohemica},
     pages = {385--420},
     publisher = {mathdoc},
     volume = {125},
     number = {4},
     year = {2000},
     doi = {10.21136/MB.2000.126272},
     mrnumber = {1802290},
     zbl = {0963.35016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126272/}
}
TY  - JOUR
AU  - Eisner, Jan
TI  - Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions
JO  - Mathematica Bohemica
PY  - 2000
SP  - 385
EP  - 420
VL  - 125
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126272/
DO  - 10.21136/MB.2000.126272
LA  - en
ID  - 10_21136_MB_2000_126272
ER  - 
%0 Journal Article
%A Eisner, Jan
%T Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions
%J Mathematica Bohemica
%D 2000
%P 385-420
%V 125
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126272/
%R 10.21136/MB.2000.126272
%G en
%F 10_21136_MB_2000_126272
Eisner, Jan. Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions. Mathematica Bohemica, Tome 125 (2000) no. 4, pp. 385-420. doi : 10.21136/MB.2000.126272. http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126272/

Cité par Sources :