$n$-inner product spaces and projections
Mathematica Bohemica, Tome 125 (2000) no. 1, pp. 87-97.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper is a continuation of investigations of $n$-inner product spaces given in \cite{five,six,seven} and an extension of results given in \cite{three} to arbitrary natural $n$. It concerns families of projections of a given linear space $L$ onto its $n$-dimensional subspaces and shows that between these families and $n$-inner products there exist interesting close relations.
DOI : 10.21136/MB.2000.126265
Classification : 46C05, 46C50
Keywords: $n$-inner product space; $n$-normed space; $n$-norm of projection
@article{10_21136_MB_2000_126265,
     author = {Misiak, Aleksander and Ry\.z, Alicja},
     title = {$n$-inner product spaces and projections},
     journal = {Mathematica Bohemica},
     pages = {87--97},
     publisher = {mathdoc},
     volume = {125},
     number = {1},
     year = {2000},
     doi = {10.21136/MB.2000.126265},
     mrnumber = {1752081},
     zbl = {0970.46013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126265/}
}
TY  - JOUR
AU  - Misiak, Aleksander
AU  - Ryż, Alicja
TI  - $n$-inner product spaces and projections
JO  - Mathematica Bohemica
PY  - 2000
SP  - 87
EP  - 97
VL  - 125
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126265/
DO  - 10.21136/MB.2000.126265
LA  - en
ID  - 10_21136_MB_2000_126265
ER  - 
%0 Journal Article
%A Misiak, Aleksander
%A Ryż, Alicja
%T $n$-inner product spaces and projections
%J Mathematica Bohemica
%D 2000
%P 87-97
%V 125
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126265/
%R 10.21136/MB.2000.126265
%G en
%F 10_21136_MB_2000_126265
Misiak, Aleksander; Ryż, Alicja. $n$-inner product spaces and projections. Mathematica Bohemica, Tome 125 (2000) no. 1, pp. 87-97. doi : 10.21136/MB.2000.126265. http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126265/

Cité par Sources :