Convergence theorems for the PU-integral
Mathematica Bohemica, Tome 125 (2000) no. 1, pp. 77-86.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give a definition of uniform PU-integrability for a sequence of $\mu$-measurable real functions defined on an abstract metric space and prove that it is not equivalent to the uniform $\mu$-integrability.
DOI : 10.21136/MB.2000.126264
Classification : 05C10, 05C75, 26A39, 28A20
Keywords: PU-integral; PU-uniform integrability; $\mu$-uniform integrability
@article{10_21136_MB_2000_126264,
     author = {Riccobono, Giuseppa},
     title = {Convergence theorems for the {PU-integral}},
     journal = {Mathematica Bohemica},
     pages = {77--86},
     publisher = {mathdoc},
     volume = {125},
     number = {1},
     year = {2000},
     doi = {10.21136/MB.2000.126264},
     mrnumber = {1752080},
     zbl = {0969.26008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126264/}
}
TY  - JOUR
AU  - Riccobono, Giuseppa
TI  - Convergence theorems for the PU-integral
JO  - Mathematica Bohemica
PY  - 2000
SP  - 77
EP  - 86
VL  - 125
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126264/
DO  - 10.21136/MB.2000.126264
LA  - en
ID  - 10_21136_MB_2000_126264
ER  - 
%0 Journal Article
%A Riccobono, Giuseppa
%T Convergence theorems for the PU-integral
%J Mathematica Bohemica
%D 2000
%P 77-86
%V 125
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126264/
%R 10.21136/MB.2000.126264
%G en
%F 10_21136_MB_2000_126264
Riccobono, Giuseppa. Convergence theorems for the PU-integral. Mathematica Bohemica, Tome 125 (2000) no. 1, pp. 77-86. doi : 10.21136/MB.2000.126264. http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126264/

Cité par Sources :