Uniformity of congruences in coherent varieties
Mathematica Bohemica, Tome 125 (2000) no. 3, pp. 269-273.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An algebra $a$ is uniform if for each $\theta\in\Con a$, every two classes of $\theta$ have the same cardinality. It was shown by W. Taylor that coherent varieties need not be uniform (and vice versa). We show that every coherent variety having transferable congruences is uniform.
DOI : 10.21136/MB.2000.126134
Classification : 08A30, 08B05
Keywords: uniformity; regularity; permutability; coherence; transferable congruences; Mal'cev condition
@article{10_21136_MB_2000_126134,
     author = {Chajda, Ivan},
     title = {Uniformity of congruences in coherent varieties},
     journal = {Mathematica Bohemica},
     pages = {269--273},
     publisher = {mathdoc},
     volume = {125},
     number = {3},
     year = {2000},
     doi = {10.21136/MB.2000.126134},
     mrnumber = {1790120},
     zbl = {0967.08001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126134/}
}
TY  - JOUR
AU  - Chajda, Ivan
TI  - Uniformity of congruences in coherent varieties
JO  - Mathematica Bohemica
PY  - 2000
SP  - 269
EP  - 273
VL  - 125
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126134/
DO  - 10.21136/MB.2000.126134
LA  - en
ID  - 10_21136_MB_2000_126134
ER  - 
%0 Journal Article
%A Chajda, Ivan
%T Uniformity of congruences in coherent varieties
%J Mathematica Bohemica
%D 2000
%P 269-273
%V 125
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126134/
%R 10.21136/MB.2000.126134
%G en
%F 10_21136_MB_2000_126134
Chajda, Ivan. Uniformity of congruences in coherent varieties. Mathematica Bohemica, Tome 125 (2000) no. 3, pp. 269-273. doi : 10.21136/MB.2000.126134. http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126134/

Cité par Sources :