Asymptotic behaviour of solutions of some linear delay differential equations
Mathematica Bohemica, Tome 125 (2000) no. 3, pp. 355-364.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we investigate the asymptotic properties of all solutions of the delay differential equation y'(x)=a(x)y(\tau(x))+b(x)y(x),\qquad x\in I=[x_0,\infty). We set up conditions under which every solution of this equation can be represented in terms of a solution of the differential equation z'(x)=b(x)z(x),\qquad x\in I and a solution of the functional equation |a(x)|\varphi(\tau(x))=|b(x)|\varphi(x),\qquad x\in I.
DOI : 10.21136/MB.2000.126125
Classification : 34K15, 34K25, 39B05, 39B22, 39B99
Keywords: asymptotic behaviour; differential equation; delayed argument; functional equation
@article{10_21136_MB_2000_126125,
     author = {\v{C}erm\'ak, Jan},
     title = {Asymptotic behaviour of solutions of some linear delay differential equations},
     journal = {Mathematica Bohemica},
     pages = {355--364},
     publisher = {mathdoc},
     volume = {125},
     number = {3},
     year = {2000},
     doi = {10.21136/MB.2000.126125},
     mrnumber = {1790126},
     zbl = {0972.34066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126125/}
}
TY  - JOUR
AU  - Čermák, Jan
TI  - Asymptotic behaviour of solutions of some linear delay differential equations
JO  - Mathematica Bohemica
PY  - 2000
SP  - 355
EP  - 364
VL  - 125
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126125/
DO  - 10.21136/MB.2000.126125
LA  - en
ID  - 10_21136_MB_2000_126125
ER  - 
%0 Journal Article
%A Čermák, Jan
%T Asymptotic behaviour of solutions of some linear delay differential equations
%J Mathematica Bohemica
%D 2000
%P 355-364
%V 125
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126125/
%R 10.21136/MB.2000.126125
%G en
%F 10_21136_MB_2000_126125
Čermák, Jan. Asymptotic behaviour of solutions of some linear delay differential equations. Mathematica Bohemica, Tome 125 (2000) no. 3, pp. 355-364. doi : 10.21136/MB.2000.126125. http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.126125/

Cité par Sources :