Nearly disjoint sequences in convergence $l$-groups
Mathematica Bohemica, Tome 125 (2000) no. 2, pp. 139-144.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For an abelian lattice ordered group $G$ let $\conv G$ be the system of all compatible convergences on $G$; this system is a meet semilattice but in general it fails to be a lattice. Let $\alpha_{nd}$ be the convergence on $G$ which is generated by the set of all nearly disjoint sequences in $G$, and let $\alpha$ be any element of $\conv G$. In the present paper we prove that the join $\alpha_{nd}\vee\alpha$ does exist in $\conv G$.
DOI : 10.21136/MB.2000.125958
Classification : 06F20, 22C05
Keywords: nearly disjoint sequence; strong convergence; convergence $\ell$-group
@article{10_21136_MB_2000_125958,
     author = {Jakub{\'\i}k, J\'an},
     title = {Nearly disjoint sequences in convergence $l$-groups},
     journal = {Mathematica Bohemica},
     pages = {139--144},
     publisher = {mathdoc},
     volume = {125},
     number = {2},
     year = {2000},
     doi = {10.21136/MB.2000.125958},
     mrnumber = {1768802},
     zbl = {0967.06013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.125958/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Nearly disjoint sequences in convergence $l$-groups
JO  - Mathematica Bohemica
PY  - 2000
SP  - 139
EP  - 144
VL  - 125
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.125958/
DO  - 10.21136/MB.2000.125958
LA  - en
ID  - 10_21136_MB_2000_125958
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Nearly disjoint sequences in convergence $l$-groups
%J Mathematica Bohemica
%D 2000
%P 139-144
%V 125
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.125958/
%R 10.21136/MB.2000.125958
%G en
%F 10_21136_MB_2000_125958
Jakubík, Ján. Nearly disjoint sequences in convergence $l$-groups. Mathematica Bohemica, Tome 125 (2000) no. 2, pp. 139-144. doi : 10.21136/MB.2000.125958. http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.125958/

Cité par Sources :