Modular inequalities for the Hardy averaging operator
Mathematica Bohemica, Tome 124 (1999) no. 2-3, pp. 231-244.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If $P$ is the Hardy averaging operator - or some of its generalizations, then weighted modular inequalities of the form \int u \phi(Pf) \leq C\int v \phi(f) are established for a general class of functions $\phi$. Modular inequalities for the two- and higher dimensional Hardy averaging operator are also given.
DOI : 10.21136/MB.1999.126254
Classification : 26A33, 26D05, 26D15, 46E30, 46M35
Keywords: Hardy inequality; modular inequality; weight functions
@article{10_21136_MB_1999_126254,
     author = {Heinig, Hans P.},
     title = {Modular inequalities for the {Hardy} averaging operator},
     journal = {Mathematica Bohemica},
     pages = {231--244},
     publisher = {mathdoc},
     volume = {124},
     number = {2-3},
     year = {1999},
     doi = {10.21136/MB.1999.126254},
     mrnumber = {1780694},
     zbl = {0936.26006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126254/}
}
TY  - JOUR
AU  - Heinig, Hans P.
TI  - Modular inequalities for the Hardy averaging operator
JO  - Mathematica Bohemica
PY  - 1999
SP  - 231
EP  - 244
VL  - 124
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126254/
DO  - 10.21136/MB.1999.126254
LA  - en
ID  - 10_21136_MB_1999_126254
ER  - 
%0 Journal Article
%A Heinig, Hans P.
%T Modular inequalities for the Hardy averaging operator
%J Mathematica Bohemica
%D 1999
%P 231-244
%V 124
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126254/
%R 10.21136/MB.1999.126254
%G en
%F 10_21136_MB_1999_126254
Heinig, Hans P. Modular inequalities for the Hardy averaging operator. Mathematica Bohemica, Tome 124 (1999) no. 2-3, pp. 231-244. doi : 10.21136/MB.1999.126254. http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126254/

Cité par Sources :