On some geometric properties of certain Köthe sequence spaces
Mathematica Bohemica, Tome 124 (1999) no. 2-3, pp. 303-314.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is proved that if a Kothe sequence space $X$ is monotone complete and has the weakly convergent sequence coefficient WCS$(X)>1$, then $X$ is order continuous. It is shown that a weakly sequentially complete Kothe sequence space $X$ is compactly locally uniformly rotund if and only if the norm in $X$ is equi-absolutely continuous. The dual of the product space $(\bigoplus\nolimits_{i=1}^{\infty}X_i)_{\Phi}$ of a sequence of Banach spaces $(X_i)_{i=1}^{\infty}$, which is built by using an Orlicz function $\Phi$ satisfying the $\Delta_2$-condition, is computed isometrically (i.e. the exact norm in the dual is calculated). It is also shown that for any Orlicz function $\Phi$ and any finite system $X_1,\dots,X_n$ of Banach spaces, we have $\mathop WCS((\bigoplus\nolimits_{i=1}^nX_i)_{\Phi})=\min\{\mathop WCS(X_i) i=1,\dots,n\}$ and that if $\Phi$ does not satisfy the $\Delta_2$-condition, then WCS$((\bigoplus\nolimits_{i=1}^{\infty}X_i) _{\Phi})=1$ for any infinite sequence $(X_i)$ of Banach spaces.
DOI : 10.21136/MB.1999.126253
Classification : 46A45, 46B20, 46B25, 46B45, 46E20, 46E40
Keywords: Köthe sequence space; weakly convergent sequence coefficient; order continuity of the norm; absolute continuity of the norm; compact local uniform rotundity; Orlicz sequence space; Luxemburg norm; Orlicz norm; dual space; product space
@article{10_21136_MB_1999_126253,
     author = {Cui, Yunan and Hudzik, Henryk and Zhang, Tao},
     title = {On some geometric properties of certain {K\"othe} sequence spaces},
     journal = {Mathematica Bohemica},
     pages = {303--314},
     publisher = {mathdoc},
     volume = {124},
     number = {2-3},
     year = {1999},
     doi = {10.21136/MB.1999.126253},
     mrnumber = {1780699},
     zbl = {0941.46005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126253/}
}
TY  - JOUR
AU  - Cui, Yunan
AU  - Hudzik, Henryk
AU  - Zhang, Tao
TI  - On some geometric properties of certain Köthe sequence spaces
JO  - Mathematica Bohemica
PY  - 1999
SP  - 303
EP  - 314
VL  - 124
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126253/
DO  - 10.21136/MB.1999.126253
LA  - en
ID  - 10_21136_MB_1999_126253
ER  - 
%0 Journal Article
%A Cui, Yunan
%A Hudzik, Henryk
%A Zhang, Tao
%T On some geometric properties of certain Köthe sequence spaces
%J Mathematica Bohemica
%D 1999
%P 303-314
%V 124
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126253/
%R 10.21136/MB.1999.126253
%G en
%F 10_21136_MB_1999_126253
Cui, Yunan; Hudzik, Henryk; Zhang, Tao. On some geometric properties of certain Köthe sequence spaces. Mathematica Bohemica, Tome 124 (1999) no. 2-3, pp. 303-314. doi : 10.21136/MB.1999.126253. http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126253/

Cité par Sources :