On pointwise interpolation inequalities for derivatives
Mathematica Bohemica, Tome 124 (1999) no. 2-3, pp. 131-148.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Pointwise interpolation inequalities, in particular, \left\vert\nabla_ku(x)\right\vert\leq c\left({\cal M}u(x)\right) ^{1-k/m} \left({\cal M}\nabla_mu(x)\right)^{k/m}, k, and |I_zf(x)|\leq c ({\cal M}I_{\zeta}f(x))^{\mathop Re z/\mathop Re \zeta}({\cal M}f(x))^{1-\mathop Re z/\mathop Re \zeta}, 0\mathop Re z\mathop Re\zeta, where $\nabla_k$ is the gradient of order $k$, ${\cal M}$ is the Hardy-Littlewood maximal operator, and $I_z$ is the Riesz potential of order $z$, are proved. Applications to the theory of multipliers in pairs of Sobolev spaces are given. In particular, the maximal algebra in the multiplier space $M(W_p^m({\Bbb R}^n)\to W_p^l({\Bbb R}^n))$ is described.
DOI : 10.21136/MB.1999.126252
Classification : 26D10, 42B25, 46E25, 46E35
Keywords: Landau inequality; interpolation inequalities; Hardy-Littlewood maximal operator; Gagliardo-Nirenberg inequality; Sobolev multipliers
@article{10_21136_MB_1999_126252,
     author = {Maz'ya, Vladimir and Shaposhnikova, Tatyana},
     title = {On pointwise interpolation inequalities for derivatives},
     journal = {Mathematica Bohemica},
     pages = {131--148},
     publisher = {mathdoc},
     volume = {124},
     number = {2-3},
     year = {1999},
     doi = {10.21136/MB.1999.126252},
     mrnumber = {1780687},
     zbl = {0936.26008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126252/}
}
TY  - JOUR
AU  - Maz'ya, Vladimir
AU  - Shaposhnikova, Tatyana
TI  - On pointwise interpolation inequalities for derivatives
JO  - Mathematica Bohemica
PY  - 1999
SP  - 131
EP  - 148
VL  - 124
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126252/
DO  - 10.21136/MB.1999.126252
LA  - en
ID  - 10_21136_MB_1999_126252
ER  - 
%0 Journal Article
%A Maz'ya, Vladimir
%A Shaposhnikova, Tatyana
%T On pointwise interpolation inequalities for derivatives
%J Mathematica Bohemica
%D 1999
%P 131-148
%V 124
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126252/
%R 10.21136/MB.1999.126252
%G en
%F 10_21136_MB_1999_126252
Maz'ya, Vladimir; Shaposhnikova, Tatyana. On pointwise interpolation inequalities for derivatives. Mathematica Bohemica, Tome 124 (1999) no. 2-3, pp. 131-148. doi : 10.21136/MB.1999.126252. http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126252/

Cité par Sources :