Two separation criteria for second order ordinary or partial differential operators
Mathematica Bohemica, Tome 124 (1999) no. 2-3, pp. 273-292.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We generalize a well-known separation condition of Everitt and Giertz to a class of weighted symmetric partial differential operators defined on domains in $\Bbb R^n$. Also, for symmetric second-order ordinary differential operators we show that $\limsup_{t\to c} (pq')'/q^2=\theta2$ where $c$ is a singular point guarantees separation of $-(py')'+qy$ on its minimal domain and extend this criterion to the partial differential setting. As a particular example it is shown that $-\Delta y+qy$ is separated on its minimal domain if $q$ is superharmonic. For $n=1$ the criterion is used to give examples of a separation inequality holding on the domain of the minimal operator in the limit-circle case.
DOI : 10.21136/MB.1999.126251
Classification : 26D10, 34B05, 34C05, 34L05, 34L40, 35B45, 35P05, 47E05, 47F05
Keywords: separation; ordinary or partial differential operator; limit-point; essentially selfadjoint
@article{10_21136_MB_1999_126251,
     author = {Brown, R. C. and Hinton, D. B.},
     title = {Two separation criteria for second order ordinary or partial differential operators},
     journal = {Mathematica Bohemica},
     pages = {273--292},
     publisher = {mathdoc},
     volume = {124},
     number = {2-3},
     year = {1999},
     doi = {10.21136/MB.1999.126251},
     mrnumber = {1780697},
     zbl = {0937.34068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126251/}
}
TY  - JOUR
AU  - Brown, R. C.
AU  - Hinton, D. B.
TI  - Two separation criteria for second order ordinary or partial differential operators
JO  - Mathematica Bohemica
PY  - 1999
SP  - 273
EP  - 292
VL  - 124
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126251/
DO  - 10.21136/MB.1999.126251
LA  - en
ID  - 10_21136_MB_1999_126251
ER  - 
%0 Journal Article
%A Brown, R. C.
%A Hinton, D. B.
%T Two separation criteria for second order ordinary or partial differential operators
%J Mathematica Bohemica
%D 1999
%P 273-292
%V 124
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126251/
%R 10.21136/MB.1999.126251
%G en
%F 10_21136_MB_1999_126251
Brown, R. C.; Hinton, D. B. Two separation criteria for second order ordinary or partial differential operators. Mathematica Bohemica, Tome 124 (1999) no. 2-3, pp. 273-292. doi : 10.21136/MB.1999.126251. http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126251/

Cité par Sources :