The obstacle problem for functions of least gradient
Mathematica Bohemica, Tome 124 (1999) no. 2-3, pp. 193-219.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a given domain $\Omega\subset\Bbb{R}^n$, we consider the variational problem of minimizing the $L^1$-norm of the gradient on $\Omega$ of a function $u$ with prescribed continuous boundary values and satisfying a continuous lower obstacle condition $u\ge\psi$ inside $\Omega$. Under the assumption of strictly positive mean curvature of the boundary $\partial\Omega$, we show existence of a continuous solution, with Holder exponent half of that of data and obstacle. This generalizes previous results obtained for the unconstrained and double-obstacle problems. The main new feature in the present analysis is the need to extend various maximum principles from the case of two area-minimizing sets to the case of one sub- and one superminimizing set. This we accomplish subject to a weak regularity assumption on one of the sets, sufficient to carry out the analysis. Interesting open questions include the uniqueness of solutions and a complete analysis of the regularity properties of area superminimizing sets. We provide some preliminary results in the latter direction, namely a new monotonicity principle for superminimizing sets, and the existence of "foamy" superminimizers in two dimensions.
DOI : 10.21136/MB.1999.126244
Classification : 35J85, 35R35, 49Q05
Keywords: least gradient; sets of finite perimeter; area-minimizing sets; obstacle
@article{10_21136_MB_1999_126244,
     author = {Ziemer, William P. and Zumbrun, Kevin},
     title = {The obstacle problem for functions of least gradient},
     journal = {Mathematica Bohemica},
     pages = {193--219},
     publisher = {mathdoc},
     volume = {124},
     number = {2-3},
     year = {1999},
     doi = {10.21136/MB.1999.126244},
     mrnumber = {1780692},
     zbl = {0936.49024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126244/}
}
TY  - JOUR
AU  - Ziemer, William P.
AU  - Zumbrun, Kevin
TI  - The obstacle problem for functions of least gradient
JO  - Mathematica Bohemica
PY  - 1999
SP  - 193
EP  - 219
VL  - 124
IS  - 2-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126244/
DO  - 10.21136/MB.1999.126244
LA  - en
ID  - 10_21136_MB_1999_126244
ER  - 
%0 Journal Article
%A Ziemer, William P.
%A Zumbrun, Kevin
%T The obstacle problem for functions of least gradient
%J Mathematica Bohemica
%D 1999
%P 193-219
%V 124
%N 2-3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126244/
%R 10.21136/MB.1999.126244
%G en
%F 10_21136_MB_1999_126244
Ziemer, William P.; Zumbrun, Kevin. The obstacle problem for functions of least gradient. Mathematica Bohemica, Tome 124 (1999) no. 2-3, pp. 193-219. doi : 10.21136/MB.1999.126244. http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126244/

Cité par Sources :