Killing's equations in dimension two and systems of finite type
Mathematica Bohemica, Tome 124 (1999) no. 4, pp. 401-420.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A PDE system is said to be of finite type if all possible derivatives at some order can be solved for in terms lower order derivatives. An algorithm for determining whether a system of finite type has solutions is outlined. The results are then applied to the problem of characterizing symmetric linear connections in two dimensions that possess homogeneous linear and quadratic integrals of motions, that is, solving Killing's equations of degree one and two.
DOI : 10.21136/MB.1999.125998
Classification : 34A26, 35A05, 53B05, 53Z05, 70G45, 70H33
Keywords: Killing’s equations; symmetric linear connections; linear integrals of motion; system of finite type; quadratic integrals of motion
@article{10_21136_MB_1999_125998,
     author = {Thompson, G.},
     title = {Killing's equations in dimension two and systems of finite type},
     journal = {Mathematica Bohemica},
     pages = {401--420},
     publisher = {mathdoc},
     volume = {124},
     number = {4},
     year = {1999},
     doi = {10.21136/MB.1999.125998},
     mrnumber = {1722875},
     zbl = {0952.70014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125998/}
}
TY  - JOUR
AU  - Thompson, G.
TI  - Killing's equations in dimension two and systems of finite type
JO  - Mathematica Bohemica
PY  - 1999
SP  - 401
EP  - 420
VL  - 124
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125998/
DO  - 10.21136/MB.1999.125998
LA  - en
ID  - 10_21136_MB_1999_125998
ER  - 
%0 Journal Article
%A Thompson, G.
%T Killing's equations in dimension two and systems of finite type
%J Mathematica Bohemica
%D 1999
%P 401-420
%V 124
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125998/
%R 10.21136/MB.1999.125998
%G en
%F 10_21136_MB_1999_125998
Thompson, G. Killing's equations in dimension two and systems of finite type. Mathematica Bohemica, Tome 124 (1999) no. 4, pp. 401-420. doi : 10.21136/MB.1999.125998. http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125998/

Cité par Sources :