The non-coincidence of ordinary and Peano derivatives
Mathematica Bohemica, Tome 124 (1999) no. 4, pp. 381-399.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $f H\subset\Bbb R\to\Bbb R$ be $k$ times differentiable in both the usual (iterative) and Peano senses. We investigate when the usual derivatives and the corresponding Peano derivatives are different and the nature of the set where they are different.
DOI : 10.21136/MB.1999.125997
Classification : 26A24
Keywords: Peano derivatives; nowhere dense perfect sets; porosity
@article{10_21136_MB_1999_125997,
     author = {Buczolich, Zolt\'an and Weil, Clifford E.},
     title = {The non-coincidence of ordinary and {Peano} derivatives},
     journal = {Mathematica Bohemica},
     pages = {381--399},
     publisher = {mathdoc},
     volume = {124},
     number = {4},
     year = {1999},
     doi = {10.21136/MB.1999.125997},
     mrnumber = {1722874},
     zbl = {0936.26002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125997/}
}
TY  - JOUR
AU  - Buczolich, Zoltán
AU  - Weil, Clifford E.
TI  - The non-coincidence of ordinary and Peano derivatives
JO  - Mathematica Bohemica
PY  - 1999
SP  - 381
EP  - 399
VL  - 124
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125997/
DO  - 10.21136/MB.1999.125997
LA  - en
ID  - 10_21136_MB_1999_125997
ER  - 
%0 Journal Article
%A Buczolich, Zoltán
%A Weil, Clifford E.
%T The non-coincidence of ordinary and Peano derivatives
%J Mathematica Bohemica
%D 1999
%P 381-399
%V 124
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125997/
%R 10.21136/MB.1999.125997
%G en
%F 10_21136_MB_1999_125997
Buczolich, Zoltán; Weil, Clifford E. The non-coincidence of ordinary and Peano derivatives. Mathematica Bohemica, Tome 124 (1999) no. 4, pp. 381-399. doi : 10.21136/MB.1999.125997. http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125997/

Cité par Sources :