Higher-order differential systems and a regularization operator
Mathematica Bohemica, Tome 124 (1999) no. 4, pp. 337-349.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Sufficient conditions for the existence of solutions to boundary value problems with a Caratheodory right hand side for ordinary differential systems are established by means of continuous approximations.
DOI : 10.21136/MB.1999.125996
Classification : 34A45, 34B10, 34B15
Keywords: Carathéodory functions; Arzelà-Ascoli theorem; Lebesgue theorem
@article{10_21136_MB_1999_125996,
     author = {Cal\'abek, Pavel},
     title = {Higher-order differential systems and a regularization operator},
     journal = {Mathematica Bohemica},
     pages = {337--349},
     publisher = {mathdoc},
     volume = {124},
     number = {4},
     year = {1999},
     doi = {10.21136/MB.1999.125996},
     mrnumber = {1722872},
     zbl = {0937.34015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125996/}
}
TY  - JOUR
AU  - Calábek, Pavel
TI  - Higher-order differential systems and a regularization operator
JO  - Mathematica Bohemica
PY  - 1999
SP  - 337
EP  - 349
VL  - 124
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125996/
DO  - 10.21136/MB.1999.125996
LA  - en
ID  - 10_21136_MB_1999_125996
ER  - 
%0 Journal Article
%A Calábek, Pavel
%T Higher-order differential systems and a regularization operator
%J Mathematica Bohemica
%D 1999
%P 337-349
%V 124
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125996/
%R 10.21136/MB.1999.125996
%G en
%F 10_21136_MB_1999_125996
Calábek, Pavel. Higher-order differential systems and a regularization operator. Mathematica Bohemica, Tome 124 (1999) no. 4, pp. 337-349. doi : 10.21136/MB.1999.125996. http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125996/

Cité par Sources :